Technical Paper

DOI: https://doi.org/10.6108/KSPE.2023.27.5.043

하이브리드 로켓엔진 액체산소 재생냉각 노즐 연구 - Part 1

박영일^{a,*} · 천우태^a · 차승원^a · 최세원^a · 우경진^a · 류성훈^a · 신동해^a

A Study on the Regenerative-Cooling Nozzle with Liquid Oxygen for Hybrid Rocket Engine - Part 1

Youngil Park^{a,*} · Wootae Cheon^a · Seungwon Cha^a ·

Sewon Choi^a · Kyoungjin Woo^a · Sunghoon Ryu^a · Donghae Shin^a ^aResearch & Development Division, Innospace Co., Ltd., Korea ^{*}Corresponding author. E-mail: yipark@innospc.com

ABSTRACT

With the aim of being applied to the upper stage for a domestic small launch vehicle, a 3-ton class hybrid rocket engine was designed and its unit component was manufactured. The paraffin-based solid fuel and liquid oxygen were selected as propellants, and an elec-motor pump is used for the oxidizer supply. For thrust vector control, submerged nozzle that utilizes of Flex Seal was adopted, regenerative-cooling method is applied for nozzle cooling and using liquid oxygen as a coolant. This paper introduces regenerative cooling channel design and manufacturing status of the development model of nozzle assembly and future test plans.

초 록

국내 소형발사체 상단 적용을 목표로 3톤급 하이브리드 로켓엔진 설계 및 단위 구성품 제작을 진행하였다. 파라핀계 고체연료와 액체산소가 추진제로 선정되었으며, 산화제 공급은 전기모터 펌프를 이용한다. 추력벡터 제어를 위해 Flex Seal을 활용한 내삽형 노즐을 채택하였으며, 노즐 냉각은 액체산소를 냉각제로 하는 재생냉각 방식을 적용한다. 본 논문에서는 노즐 조립체 개발모델의 재생냉각 채널 설계 및 제작 현황 그리고 향후 시험계획에 대해 소개하고자 한다.

Received 31 May 2023 / Revised 31 August 2023 / Accepted 6 September 2023 Copyright © The Korean Society of Propulsion Engineers pISSN 1226-6027 / eISSN 2288-4548

[이 논문은 한국추진공학회 2023년도 춘계학술대회(2023.5.24~26, 라마다프라자 제주호텔) 발표논문을 심사하여 수정·보완한 것임.] 1. 서 론

뉴스페이스 시대의 도래에 따라 전 세계적으 로 다수의 민간 우주 기업 출현과 함께 범정부

Key Words: Hybrid Rocket Engine(하이브리드 로켓엔진), LOX(액체산소), Regenerative Cooling(재 생냉각), HyPER-3RCC(3톤급 재생냉각 하이브리드 로켓엔진), Additive Manufacturing (적층제조)

차원에서의 우주 산업 육성 정책을 추진하고 있 다. 우리나라 또한 우주경쟁력 제고를 위한 여러 정부사업이 추진 중에 있으며, 대표적으로 스페 이스파이오니어사업, 스페이스챌린지사업, 미래 우주교육센터사업, 소형발사체개발역량지원사업 (이하, '역량지원사업') 등이 있다. 역량지원사업 은 2022년 5월부터 3개의 컨소시엄을 선정하여 진행 중이며, 2023년 5월 현재 3단계 사업 중 1 단계-2차년도 단계에 있다(총 사업 기간 6년).

본 논문에서 기술되는 하이브리드 로켓엔진 재생냉각 노즐은 역량지원사업의 목표인 민간 주도 소형발사체 상단(upper stage) 엔진 개발을 위해 선정된 3개 컨소시엄 중 하나인 이노스페 이스 컨소시엄에서 연구개발 중인 엔진 구성품 중의 하나이다. 참고로, 1단 엔진은 한국항공우 주연구원에서 개발한 누리호 2단 엔진(추력 75 톤) 1기가 적용되며, 참여 컨소시엄의 시스템 설 계 요구도에 따라 성능개량이 진행될 수 있다.

이노스페이스 컨소시엄은 독자 개발 중인 한 빛발사체와 동일한 추진제 구성인 파라핀계 연 료와 액체산소를 상단 엔진(HyPER-3RCC)의 추 진제로 선정하여 연구개발 활동을 수행하고 있 다. 상단 엔진은 장기 연소시간이 요구되는 만큼 노즐 내부 열설계가 매우 중요한 요소 가운데 하나인데, 하이브리드 엔진의 특성을 감안하여 액체산소(Liquid Oxygen, LOx)를 이용한 재생냉 각 노즐이 적용될 예정이다.

RO 등[1]은 액체산소 재생냉각 노즐을 적용한 하이브리드 로켓엔진의 성능해석을 수행하였으 며, Naoki 등[2]은 실제 하이브리드 로켓엔진 연 소시험을 통해 액체산소 재생냉각 연소기의 성 능 데이터를 확보하였다. Price 등[3-5]은 수소/ 액체산소 또는 케로신/액체산소를 사용하는 연 소기의 재생냉각에 초임계 상태의 액체산소가 사용될 수 있는지에 대한 가능성을 검토하였다. 국내에서는 김철웅 등[6]이 소형발사체 상단용 액체메탄 로켓엔진의 개념설계를 진행하였으며, 임병직 등[7,8]은 액체산소와 액체메탄을 모두 냉각 유체로 사용하는 연소기의 적층 제작 및 연소시험을 수행하였다.

한편, 하이브리드 로켓엔진은 연소실 내부에

Fig. 1 Schematic of submerged nozzle with FSA.

고체연료가 충전되므로 액체로켓 대비 연소기의 종횡비가 크기 때문에 연소기 조립체 전체를 짐 벌(gimbal) 방식으로 제어하기에 쉽지 않다. 그 러한 이유로 하이브리드 로켓엔진은 추력벡터 제어(thrust vector control, TVC)를 위해 고체로 켓에서 주로 적용하는 FSA(flex seal assembly) 방식을 채택하는 것이 시스템 구성 측면에서 유 리하다. 본 컨소시엄에서 개발 중인 TVC 노즐 조립체 또한 FSA 방식을 적용하였으며 Fig. 1에 개략도를 도시하였다.

본 논문에서는 이노스페이스 컨소시엄에서 연 구개발 중인 하이브리드 로켓엔진 재생냉각 노 즐에 대한 설계 및 제작 현황, 그리고 향후 시험 계획에 대해 기술하고자 한다.

2. 재생냉각 노즐 기본설계 및 열·유동 해석

21 재생냉각 노즐 기본설계

노즐의 재생냉각 채널 기본설계는 로켓엔진 설계 프로그램(rocket propulsion analysis, RPA) 을 통해 수행하였으며, 그 제원과 형상은 Table 1 및 Fig. 2와 같다. 냉각 채널의 입출구는 전기 펌프를 통해 액체산소(냉각제)가 유입되는 채널 입구부(Fig. 2 'From ElecPump' 참조)와 분사기 (injector)로의 공급을 위한 출구부(Fig. 2 'To Injector' 참조)로 구성된다.

Fig. 2 Regenerative cooling channel design concept.

Table 1. Nozzle configuration.

Parameter	Value
Nozzle Configuration (inner wall)	
- Thickness [mm]	0.6
- Thermal Conductivity [W/m · K]	20
Coolant Inlet Condition	
- Pressure of LOx [MPa]	7
- Temperature of LOx [K]	100
- Mass Flow Rate of LOx [kg/s]	7.5
Channel Configuration	
- Number of Channel [EA.]	100
- Width of Rib [mm]	0.5
- Channel Width at Throat [mm]	2.1
- Channel Height at Throat [mm]	2.0

입출구 채널은 각각 50개(총 100개)로 내벽 두 께는 0.6 mm이며, 설계 및 해석에 적용된 채널 금속 구조물의 열전도율은 20 W/m・K를 적용 하였다. 재생냉각 노즐의 안정적인 작동을 위해 연소실 내벽은 적용 소재인 Inconel 718의 용융 점 미만 값인(1,300 K) 이하로 유지될 수 있도록 냉각제의 공급 온도 및 유량, 채널 길이 등을 선 정하였고, 냉각제의 물성치가 급격하게 변화하지 않도록 채널 출구에서 초임계(supercritical) 상태 가 되도록 설계하였다. 이후 유동 해석을 통해 연소실 내벽 온도 및 냉각제 상변화(phase change) 거동을 확인함으로써 설계를 검증하 였다.

Fig. 3 Heat flux input with axial direction.

Fig. 4 Temperature contour of nozzle inner wall.

22 재냉냉각 노즐 열유동 해석

설계모델의 재생냉각 성능 확인을 위해 냉각 제의 대류현상, 채널 벽면의 전도현상을 모두 고 려한 복합열전달(conjugate heat transfer) 전산유 체(computational fluid dynamics, CFD) 해석을 상용 프로그램인 Ansys Fluent로 수행하였으며, 해석 조건은 아래와 같다.

- ·난류 모델 : к-ш SST
- · 수치 기법 : 정상 상태, node-based, 2차 이산 화 방식
- · 격자 수 : 약 1,500만개(3차원 형상)

경계 조건은, 입구에는 압력, 출구에는 유량 조건을 적용하였으며, 연소실 내벽에는 Fig. 3과

	Temperature [K]	Pressure [MPa]
Inlet	100	7
Outlet	170	5.55
Δ	70	1.45

Table 2. Difference in LOX thermodynamic properties by regenerative cooling.

Fig. 5 Oxygen phase change in the nozzle.

같이 RPA에서 도출된 축방향에 따른 열유속 (heat flux) 값을 부여하였다. Fig. 3의 x축은 노 즐 입구에서부터의 거리를 나타내며, 노즐 목에 서의 열유속 값이 가장 크다.

냉각제인 액체산소의 물성치는 해석 안정성을 위해 상수(constant)로 가정하였으며, 입/출구 온 도의 평균값을 기준으로 미국표준기술연구소 (National Institute of Standards & Technology, NIST) 제공 데이터[9]를 활용하였다. 추후 시험 에서 계측된 온도 데이터를 통해 해석기법을 검 증 및 보완할 예정이다.

Fig. 4는 재생냉각 노즐 내벽의 온도 분포를 나타낸다. 노즐 목 부근의 온도가 가장 높은 것 이 확인되며, 냉각제가 공급되는 1차 유로(채널) 와 회수되는 2차 유로의 벽면 온도는 상이한 것 이 관찰된다. 1, 2차 유로의 온도가 상이한 것은 냉각제가 채널을 통과하면서 열흡수를 통해 온 도가 상승하고, 이로 인해 열전달률이 낮아지기 때문이다. Fig. 4에서 노즐 팽창부 끝단의 온도 가 국소적으로 상승하는 현상이 관찰되는데, 이

Fig. 6 HyPER-3RCC boundary condition.

Fig. 7 HyPER-3RCC structural analysis result.

는 2차 유로가 해당 지점 이전까지만 구성되어 있어 냉각 효과가 감소하기 때문이다.

Table 2는 CFD를 통해 확인한 냉각제의 온도 및 압력 변화량이며, Fig. 5는 냉각제의 상변화 를 나타낸 것이다. 재생냉각 채널을 통과하면서 유체의 온도는 70 K 상승하였으며, 압력은 1.45 MPa 감소하였다. 열역학적 물성에 따라 액체상 태로 유입된 냉각제가 열흡수를 통해 초임계 상 태로 배출되는 것을 알 수 있다.

23 재생냉각 노즐 구조해석

재생냉각 노즐의 구조 안정성을 검증하기 위 해 Abaqus/CAE 2022를 사용하여 구조해석을 진행하였다. 해석을 위한 하중 및 경계조건은 Fig. 6과 같으며, 하중조건은 작동압력 기준으로

제27권 제5호 2023.10. 하이브리드 로켓엔진 액체산소 재생냉각 노즐 연구 - Part 1

안전율 1.5배를 적용하였다. 또한, 해석을 위한 Inconel 718의 물성치는 Ansys Workbench에서 제공하는 상온 물성치를 사용하였다.

해석수행 결과로 Fig. 7을 살펴보면, 노즐 하 부 냉각 채널 액체산소 입구부에 국소적으로 허 용응력(648 MPa)보다 높은 919.8 MPa이 나타났 으며, 이에 대한 보완 설계를 할 예정이다. 최대 변위(0.236 mm)는 조립체 상세 설계 시 고려하 고자 한다. 향후 시편 시험을 통해 온도 구간별 재료 물성치를 확보하고 극저온, 고온 물성치를 적용하여 추가 구조해석을 진행할 예정이다.

3. 재생냉각 노즐 적층제조

3.1 적층제조 과정

재생냉각 노즐은 최근 다양한 분야에서 활발 히 활용되는 적층제조(additive manufacturing, AM) 기법 중 PBF(power bed fusion) 방식을 채 택하였고, 적층제조는 이노스페이스 컨소시엄인 '스타코'에서 GE사의 M2 Series 5 장비(Fig. 8 참조)를 사용하여 다음과 같은 과정으로 진행하 였다.

- ·AM 파트 출력
- 복합 열처리
- Support 제거
- •표면 및 내부 연마 가공
- 적층제조 완료
- ·비파괴 검사(CT 촬영 등)

설계 오류로 인한 손실을 최소화하기 위해서 는 AM 파트 출력 이전 적층제조 최적화 형상설 계가 선행되어야 하며, 최소기능제품 (minimum viable product, MVP)을 통해 적층제조 가능성 평가가 이루어져야 한다. 적층제조 가능성 평가 는 Fig. 9와 같이 평가 부위를 선정하고, Fig. 10 에 도시한 대로 출력한 평가 파트에 대해 진행 하였다. MVP를 통해 적층제조 가능성을 평가한 결과 일부 구간에서 표면 조도가 설계 기준 대 비 거칠게 출력되었으나, 재생냉각 노즐 성능에 지배적인 영향을 미치지 않는 구간임을 감안하 여 후속 과정인 AM 파트 출력을 진행하였다.

3.2 적층제조 결과물

MVP 출력 및 제조 가능성 평가 결과를 기초 로 재생냉각 노즐 Mock-up을 적층제조 하였다. 시작품(trial product) 개념으로 제작하는 Mockup은 재생냉각 노즐 내부 유로에 대한 제작 품 질 상세 확인을 위해 Fig. 11과 같이 일부 구간 을 컷아웃 한 형상으로 출력하였다.

Mock-up 완성품에 대한 제작 품질 검토 결과,

Fig. 8 M2 series 5 (GE additive).

Fig. 9 Selected part for MVP.

Fig. 10 MVP selection part output.

Fig. 11 Additive manufactured LOX regenerative cooling nozzle mock-up.

Table 3. Requirement of parameters after AM and verification results.

Parameter	Requirement	Result
Woight [kg]	3.79±0.19	3.87
weight [kg]	(3.60~3.98)	(pass)
Dib Thielmose [mm]	0.50 ± 0.02	0.50
Kib mickness [min]	$(0.48 \sim 0.52)$	(pass)

Table 3과 같이 Mock-up 완성품의 무게와 냉각 채널 립의 두께는 측정 오차를 고려한 요구도를 충족하는 것을 확인하였다.

본 연구의 일환으로 향후에는 출력물 내부의 잔여 분말 제거 기법에 대한 연구와 시편시험을 통한 극저온, 고온 물성 시험을 진행할 계획이다.

4. 재생냉각 노즐을 적용한 노즐 조립체 설계

4.1 내탄도 해석

노즐 조립체의 예비 설계안 도출을 위해 하이 브리드 로켓모터에 대한 내탄도 해석을 수행하 였다. 재생냉각 노즐의 열·유동 해석 결과를 통 해 도출된 산화제 공급조건(171 K, 5.5 MPa)과 연료 조성(composition) 정보를 토대로 NASA의 CEA(Chemical Equilibrium with Applications) 프로그램을 이용하여 산출한 연소생성물 정보를 자체 개발한 인하우스 코드에 입력하여 내탄도

Table 4	1.	Preliminary	/ desigi	n results	s of	internal	ballistic
		of hybrid r	rocket r	notor(@	sea	level).	

Subject	Value
• Requirements	
Averaged Thrust [ton \cdot f]	3.2
Operation Time [s]	500.0
• Calculated	
Chamber Pressures [MPa]	3.5
Nozzle Throat Dia. [mm]	83.5
Nozzle Exit Dia. [mm]	240.1
Specific Impulse [s]	297.0

Table 5. Nozzle contour preliminary design results.

Parameter		
Entrance Contour Radius [mm]	62.6	
Initial Diverging Contour Radius [mm]	15.9	
Initial Diverging Angle [°]	23.0	
Outlet Diverging Angle [°]	13.0	
Diverging Length [mm]	263.6	
Expansion Ratio	8.3	

해석을 수행하였다. 내탄도 해석을 통해 도출한 본 연구의 요구도 달성을 위한 핵심 설계 인자 들을 Table 4에 요약하였다.

4.2 노즐 조립체 설계

4.2.1 노즐 형상(contour) 설계

노즐 축소-확대부 형상은 벨(bell) 노즐 최적 설계 기법[10]을 활용하여 설계하였으며, 주요 형상 정보는 Table 5와 같다.

4.2.2 노즐 구동부 설계

FSA는 노즐 조립체의 구성품 중 하나로, 체결 을 위한 전후방 구조물과 유연 구동을 가능케 하는 FSJ(flex seal joint) 그리고 열적 보호를 위 한 부츠(boots)로 구성된다. FSJ는 심(shim)과 패 드(pad)의 교차/반복 결합 조립체이며, FSJ 설계 의 핵심 인자들을 Fig. 12에 도시하였다.

연소 시 하이브리드 로켓모터의 내부 조건과 시스템 작동 요구도, 적용 재료의 물성 등을 고 려하여 FSA의 예비설계를 수행하였으며, 설계

Subject	Value
Shim Material	Silica phenolic
Pad Material	Rubber
Front/Rear Ring Structure	Aluminum
Thermal Boots Material	EPDM
FSA Operating Angle [°]	±5
FSA Maximum Angle [°]	±6
FSA Minimum Diameter [mm]	210
FSA Pivot Length [mm]	164
Shim Thickness [mm]	3.0
Pad Thickness [mm]	1.5
β, β ₁ , β ₂ [°]	45, 37, 53
φ [°]	10
Shim Stress [MPa]	120.4
Pad Stress [MPa]	0.69
Estimated Total Mass [kg]	5.9

Table 6. Preliminary design results of FSA.

Fig. 12 FSJ design parameter[11].

결과를 Table 6에 요약하였다.

4.2.3 노즐 조립체 예비설계안

노즐 조립체 예비설계 결과와 개략도를 각각 Table 7과 Fig. 13에 나타낸다.

본 연구의 노즐 조립체는 3가지 유형(삭마, 재 생, 복사)의 냉각 기술이 적용된다.

Table 7. I	Results	of	nozzle	preliminary	design.
------------	---------	----	--------	-------------	---------

Subject	Value
Materials of Applied Composite	Silica-Phenolic,
Material	Rubber, EPDM
Materials of Applied Metal	Aluminum, C-103, Inconel 718
Total Mass [kg]	39
Nozzle Throat Dia. [mm]	83.5
Nozzle Exit Dia. [mm]	240.1
Nozzle Expansion Ratio	8.27
Specific Impulse, vacuum [s]	325

Fig. 13 Schematic of nozzle assembly.

노즐 조립체의 전방 내열재는 삭마 냉각 방식 을, 노즐 목부터 특정 확장부까지는 채널 냉각 을, 이후 출구까지는 복사 냉각 방식을 사용한 다. 각 냉각 성능에 대한 예비설계안은 열·유동 및 삭마 해석을 통해 도출하였으며, 시험 결과를 통해 이를 검증 및 보완할 계획이다.

5. 하이브리드 로켓모터 시험 계획

액체산소를 냉각제로 적용하는 재생냉각 노즐 성능검증 시험을 준비 중에 있다. 노즐 성능 시 험은 이노스페이스 연소시험장에서 하이브리드 로켓 모터 지상연소시험을 통해 진행될 예정이

Step	STEP 1	STEP 2	STEP 3
Objective	 Analysis of combustion & regenerative cooling 	 Liquid oxygen regenerative cooling test 	• Engine system test
Engine schematic	LOx (Oxydizer)	LOx (Coolant) LOx (Coolant)	LOx (Oxydizer)
Coolant	Liquid nitrogen	Liquid oxygen	Liquid oxygen
Oxidizer supply	Separate storage tank	Separate storage tank	Regenerative cooling system
Evaluation	 Combustion efficiency Combustion instability Heat flux profile 	 Heat transfer Coolant temperature Pressure drop	 C-D nozzle performance Long-duration possibility TVC operation

Table 8. Test plan of hybrid rocket motor assembly with regenerative-cooling nozzle.

며, 단계별 시험계획을 아래에 정리하고 Table 8 에 요약하였다.

- 1단계: 안전을 고려하여 모사 유체인 액체질 소를 냉각제로 적용한 지상연소시험이다. 시험 목적으로는 개발모델 연소 특성 분석 및 냉각 채널 작동성을 고찰하기 위함이다.
- 2단계: 실매질인 액체산소를 냉각제로 적용하 되 별도 저장탱크에서 산화제를 연소실로 공 급하는 방식의 지상연소시험이다. 시험 목적으 로는 액체산소 재생냉각 특성 분석 및 CFD 해석 결과를 검증하기 위함이다.
- · 3단계: 재생냉각에 사용된 액체산소를 연소실 로 직접 공급하는 방식의 지상연소시험 (비행 모델과 동일한 시스템 구성)이다. 시험 목적으 로는 시스템 성능 검증 및 비행모델 적용성을 분석하기 위함이다.

6. 결 론

국내 소형발사체용 상단엔진 적용을 목표로 3 톤급 하이브리드 로켓엔진을 개발하고 있으며, 액체산소를 냉각제로 하는 재생냉각 노즐을 채 택하였다. 이를 위해 재생냉각 노즐의 설계, 열 유동 및 구조해석을 수행하였고 적층제조 가능 성 확인 및 재생냉각 노즐을 포함하는 하이브리 드 노즐 조립체의 예비설계를 진행하였다. 향후 재생냉각 노즐 성능검증 시험을 계획하고 있다. 재생냉각 노즐이 적용된 하이브리드 엔진은 장 기 연소시간이 가능하므로, 목표로 하는 소형발 사체 상단엔진으로 활용이 가능할 것으로 기대 된다.

후 기

본 연구는 한국연구재단을 통해 과학기술정보 통신부 '소형발사체 개발역량 지원사업'의 지원 을 받아 수행되었음(RS-2022-00156393).

References

1. Ro, T., Mitsutani, T. and Yuasa, S., "The Design of Regenerative Cooling Nozzle

with Liquid Oxygen for Hybrid Rocket Engine, "KSPE Spring Conference, pp. 544-549, 2004.

- Naoki, Y., Hitomi, O., Junya M. and Takashi, S., "Combustion Test of SOFT Hybrid Rocket Engine with LOX Regenerative-cooling Nozzle," The 11th Asian Joint Conference on Propulsion and Power, AJCPP2023-085, 2023.
- Spencer, R.G., Rousar, D.C. and Price, H.G., "LOX-Cooled Thrust Chamber Technology Developments," *Journal of Spacecraft and Rockets*, Vol. 17, No. 1, pp. 35-41, 1980.
- Price, H.G., "Cooling of High Pressure Rocket Thrust Chambers with Liquid Oxygen," Journal of Spacecraft and Rockets, Vol. 18, pp. 338-343, 1980.
- Price, H.G. and Masters, P.A., "Liquid Oxygen Cooling of High Pressure LOX/Hydrocarbon Rocket Thrust Chambers," NASA TM-88805, 1986.
- Kim, C.W., Lim, B.J., Lee, J.S., Seo, D.B., Lim, S.H., Lee, K.O., Lee, K.J. and Park, J.S., "Conceptual Design of a LOX/Methane

Rocket Engine for a Small Launcher Upper Stage," *Journal of the Korean Society of Propulsion Engineers*, Vol. 26, No. 4, pp. 54-63, 2022.

- Lim, B., Lee, K., Lee, K. and Park, J., "Additive Manufacturing of a Regeneratively Cooled Thrust Chamber with Alternating Channels for Lox and LCH4 Lines," *KSPE Spring Conference*, pp. 33-33, 2022.
- Lim, B., Lim, J., Lee, K. and Park, J., "Firing Tests of a Regeneratively Cooled Thrust Chamber with Alternating Channels for Lox and LCH4 Lines," *KSPE Spring Conference*, pp. 34-34, 2022.
- Linstrom, P., NIST Chemistry WebBook: NIST Standard Reference Database 69 (online database), NIST, Gaithersburg, MD, 1997.
- Rao, G.V.R., "Exhaust Nozzle Contour for Optimum Thrust," *Journal of Jet Propulsion*, Vol. 28, No. 6, pp. 377 - 382, 1958.
- Robert, F.H.W. and Richard, J.Z., "Solid Rocket Thrust Vector Control," NASA SP-8114, 1974.