Technical Paper

DOI: http://doi.org/10.6108/KSPE.2023.27.4.033

바이오항공유 규격화를 위한 인화점 측정과 라울의 법칙 기반 예측모델의 비교연구

장정희" • 이지은" • 장현성" • 한기보".*

A Comparative Study of Flash Point Measurement and Raoul's Law-based Prediction Models for Standardisation of Bio-jet fuel

Jung hee Jang^a · Jieun Lee^a · Hyunsung Jang^a · Gi Bo Han^{a,*}

^a Clean Energy Conversion Research Center, Institute for Advanced Engineering, Korea *Corresponding author. E-mail: gbhan@iae.re.kr

ABSTRACT

Bio-jet fuel has been proposed as a powerful tool for reducing carbon dioxide in the aviation sector. Among the specifications of bio-jet fuel, flash point is a very important specification related to safety during storage, transport and use, but there is a lack of research on it. In this study, we investigated the molar fraction of hydrocarbons in bio-jet fuel produced by the HEFA process from palm oil to predict the flash point of bio-jet fuel based on Raoul's law. The predicted flash point results were compared with the flash point measured by the tag-closed cup test method. As a result, the predicted flash point of bio-jet fuel was similar to the measured flash point, and a correlation of 0.90 was found. This confirms that the flash point of bio jet fuel can be predicted.

초 록

항공 부문의 이산화탄소를 저감하기 위한 바이오항공유의 규격 중 인화점은 저장, 운송 및 사용과정 에서 안전과 연계되는 매우 중요한 규격이나, 이에 대한 연구가 미진한 실정이다. 본 연구에서는 HEFA공정을 적용하여 팜유로부터 제조된 바이오항공유 내 탄화수소의 볼 분율를 조사하여 라울의 법 칙을 바탕으로 바이오항공유의 인화점을 예측하고자 하였다. 예측된 인화점 결과는 태그 밀폐식 방식 으로 측정된 인화점과 비교하였다. 그 결과 예측된 바이오항공유의 인화점은 측정 인화점과 유사한 결 과를 얻을 수 있었으며, 0.90의 상관관계를 나타냄을 확인하였다.

Key Words: Bio-Jet Fuel(바이오항공유), Flash Point(인화점), Tag Closed Flash Point Tester(태그 밀 폐식 인화점시험기), Raoult's Law(라울의 법칙), Palm Oil(괌유)

Received 2 June 2023 / Revised 8 August 2023 / Accepted 15 August 2023 Copyright © The Korean Society of Propulsion Engineers pISSN 1226-6027 / eISSN 2288-4548

[이 논문은 한국추진공학회 2023년도 춘계학술대회(2023.5.24.~26, 라마다프라자 제주호텔) 발표논문을 심사하여 수정·보완한 것임.] 1. 서 론

항공 부문에서 배출되는 이산화탄소는 전세계

온실가스 배출량의 2%를 차지하고 있으며, 항공 산업의 발달로 인하여 배출량이 매년 증가하고 있다. 따라서 국제항공운송협회(International Air Transport Association, IATA)는 항공부문의 온 실가스 배출량 상한을 설정하였으며, 이산화탄소 배출량에 대하여 향후 2050년까지 2005년 대비 50% 삭감을 목표를 제시하였다[1]. IATA의 목표 를 달성하기 위해서는 항공운영기술의 고도화, 기체 형상의 최적화를 통한 항속거리 향상 그리 고 바이오항공유의 도입이 필요하다. 이 중 바이 오항공유가 이산화탄소 배출 감축에 필수적인 요소로 주목받고 있으며, 바이오항공유의 도입을 위해 바이오항공유 제조 기술을 개발하는 노력 이 이뤄지고 있다[2].

현재까지 개발된 바이오항공유를 제조하는 기 술 중 식물성 오일의 수첨탈산소 반응으로 생성 된 탄화수소류 화합물을 수첨업그레이딩하는 공 정인 Hydro-processed Esters and Fatty Acids (HEFA) HEFA 공정이 상용화 가능성이 높은 기 술로 평가 하고 있다[3,4]. 항공유에 포함되어 있 는 탄화수소 화합물은 탄소와 수소의 결합구조에 따라 다음과 같이 구분할 수 있다. 기본적인 사 슬 구조를 가지고 있는 노말 파라핀(n-paraffine), 곁가지가 있는 아이소 파라핀(iso-paraffine), 사 이클로 파라핀(cyclo-paraffine), 방향족(aromatic) 으로 구분될 수 있으며, 노말 파라핀을 제외한 아이소 파라핀, 사이클로 파라핀, 방향족 화합물 은 결합형태에 따라 수많은 이성질체를 형성한 다. HEFA 공정으로부터 제조된 바이오항공유의 탄화수소 화합물은 대부분 파라핀 성분이며 방 향족은 없거나 극소량 포함되어 있다. 또 다른 특성으로는 황 함량이 낮으며 세탄가가 높다[5]. 바이오항공유는 American Society for Testing and Materials(ASTM) D7566 규격을 만족해야하 며, 인화점의 기준은 38 ℃ 이상이다. 바이오항 공유의 제조과정에서 경질탄화수소(C11 이하)가 포함될 수 있으며, 경질 탄화수소는 낮은 인화점 으로 인하여 취급과정에서 화재, 폭발의 위험성 이 존재한다[6]. 현재 신규 개발 및 대량 제조기 술이 연구되고 있는 바이오항공유의 위험성 평 가가 제대로 이루어지지 않고 있는 실정이며, 따 라서 바이오항공유를 제조 및 유통하기 위해 바 이오항공유의 인화점을 측정 및 제어할 수 있는 기술의 확보가 필요하다.

인화점을 측정하는 과정은 연료의 연소를 동 반하며, 정밀한 인화점을 측정하기 위해서는 측 정 횟수의 증가, 연료의 소실, 위험성 증가, 인건 비, 장치와 시약의 구입 등의 경제적 손실이 발 생한다[7]. 실제 인화점 측정의 단점을 극복하기 위하여 계산을 통한 인화점을 예측하고자 하는 연구가 수행되었다. Moghaddam 등[8]은 6가지 의 가연성 이성분계(binary) 유기물의 인화점을 태그 밀폐식 인화점시험기로 측정하였으며, 예측 값은 Liaw 모델, Wickey 모델, Catotire 모델을 평가하였다. Balasubramonian 등[9]은 ASTM D6450 방법으로 이성분계 유기성 인산염 용매의 인화점 측정하였으며, UNIFAC 모델을 통하여 예측한 값을 측정값과 비교분석하였다. Ha[10]은 삼성분계 액체 혼합물의 인화점을 산출하기 위 해 라울의 법칙(Raoult's Law)과 다중회귀분석법 을 적용하였으며, Seta-flash 밀폐식 장치로 측정 한 인화점을 예측값과 비교하였다. 현재까지 탄 화수소 기반 연료 화합물의 인화점을 예측하기 위한 노력이 지속적으로 이루어지고 있으나, 단 일성분, 이성분계, 삼성분계 혼합물질의 숫자가 한정적인 화합물에 대한 연구가 주로 진행되었 다[11-13].

수 백가지 이상 탄화수소들의 혼합물인 바이 오항공유의 인화점 예측에 있어서 각 물질들에 대한 특성을 개별로 계산하기에는 현실적으로 매우 어렵다. 특히, 최근 개발되고 있는 바이오 항공유와 같은 촉매적 반응을 통하여 제조된 탄 소중립연료에 대한 연구는 미진한 실정이다. 따 라서, 새롭게 연구 및 개발되는 바이오항공유의 인화점을 조절하기 위한 기술의 개발을 위하여 바이오항공유의 인화점을 예측할 수 있는 방법 의 제안이 필요하며, 실제 측정결과와의 비교연 구를 통하여 예측의 정확성을 검증하여야 한다.

본 연구에서는 식물성 오일 HEFA공정을 통하 여 제조된 바이오항공유내 탄화수소 분석과 인 화점의 측정 및 예측을 하였다. 바이오항공유의 탄소수별 탄화수소의 성분과 몰 분율(mole fraction)을 조사하였으며, 라울의 법칙을 활용하 여 바이오항공유내 탄화수소의 몰 분율과 인화 점과의 상관관계를 확인하였다. 이를 바탕으로 촉매적 반응을 통하여 제조된 다성분계 혼합물 인 바이오항공유의 인화점을 산출할 수 있는 방 법과 실제 인화점측정 결과와의 비교를 통하여 측정방법의 신뢰성을 확인하여 제시하였다.

실험 장치 및 방법

2.1 바이오항공유 성분과 분석법

본 연구에서 몰 분율(mole fraction) 및 인화점 측정을 위하여 사용된 바이오항공유는 선행연구 에서 제조한 바이오항공유를 사용하였다[14]. 식 물성 오일인 팜유를 사용하여 수첨탈산소 및 수 첨업그레이딩 반응을 연계한 HEFA공정으로 제 조된 바이오항공유는 증류를 통하여 탄화수소의 범위와 볼 분율이 조절되었으며, 서로 다른 탄화 수소 몰 분율을 가진 바이오항공유의 인화점을 측정하였다. 바이오항공유의 정성과 정량을 위한 분석은 가스 크로마토그래피질량분석기(Gas chromatography-mass spectrometry, GC-MS)를 이용했다. GC는 Agilent사의 6890N모델을 사용 하였으며, MS는 Agilent사의 5973모델을 사용하 였다. 바이오항공유 시료는 주입구에서 기화되어 GC의 컬럼 (HP-5, 30 m x 0.32 mm x 0.25 mm)으 로 이동하여 분리된 후 MS를 통해 검출되었다. GC-MS 결과는 화학물질 초록 등록 번호(Chemical Abstract Service Registry Number, CAS No.)를 기반으로 각 물질의 구조와 결합 형태를 구분하 였으며, 각 화학구조별 몰 분율을 정밀하게 분류 하였다.

2.2 바이오항공유 인화점 측정 장치 및 방법

합성된 바이오항공유의 인화점 측정은 93 ℃ 이하의 시료에 적합한 태그밀폐식 방식을 사용 하였으며, KS M2010 시험법을 적용하여 Fig 1. 의 태그밀폐식 인화점측정기(ATG-7, TANAKA) 를 사용하여 인화점을 측정하였다. Table 1에 인 화점을 측정하는 조건을 명시하였다. 인화점 측 정시 50±0.5 mL의 측정샘플을 밀폐한 시료컵 속 에서 시료의 온도를 약 1 ℃/min 속도로 상승시 키며, 매 0.5 ℃ 간격으로 가열된 전기코일을 접 근시켰다. 이 과정에서 시료가 착화되는 온도를 시료의 인화점으로 표기하였다.

2.3 라울의 법칙을 활용한 인화점 예측

혼합물질의 인화점을 예측하는 기법인 라울의 법칙에 따르면 계면의 탄화수소 화합물들의 몰 분율에 따라 인화점이 변화되며, 계면에서의 몰 분율은 각 화합물의 온도에 따른 포화증기압 변 화에 따라 변화된다[15]. 즉, 온도에 따른 연료계 면에서의 탄화수소 화합물의 몰 분율 변화가 인 화점을 결정하게 된다.

본 연구에서는 바이오항공유를 이상용액(Ideal solution)과 기체(Ideal gas)로 가정하였다.

바이오항공유에는 노말 파라핀과 아이소 파라 핀이 혼합되어 있으나, 아이소 파라핀은 탄소사 이의 결합구조에 따라 수 많은 이성질체가 존재 하기 때문에 각 화학물의 물리-화학적 특징을 개 별적으로 계산하기 어려운 문제가 있으며, 계산 의 일관성을 위하여 아이소 파라핀을 노말 파라 핀으로 가정하고 하였다. 5개의 탄소로 구성되었 으며, 상온에서 액체로 존재하는 n-pentane에서 부터 11개의 탄소로 구성되었으며, 혼합물 중 가

Fig. 1 Tag flash closed cup tester.

Table 1. Test condition of tag closed cup.

Flash point (°C)	Heating rate	Interval (℃)	
-20~93	1 ℃/60	0.5	
	± 6 sec	0.0	

장 많은 농도로 존재하는 n-undecane까지의 몰 분율을 활용하여 인화점을 계산하였다.

바이오항공유를 이상용액과 용액의 계면에 존 재하는 기체상태의 연료를 이상기체로 가정하였 을 때, 기-액 상평형에 있는 *i*성분에 대해 라울의 법칙을 적용하여 Eq. 1과 같이 표현할 수 있다.

$$G_{m,i} = \frac{X_{m,i} P_i^{sat}}{P} \tag{1}$$

여기서 $G_{m,i}$ 는 i성분의 기상 몰 분율, $X_{m,i}$ 는 i성분의 액상 몰 분율, P_i^{sat} 는 i성분의 포화증기 압이다. 하부인화한계인 L_i 는 기-액 상평형 상태 에서 Le chatelie 등[16]과 Liaw 등[17]에 의해 $G_{m,i}$ 과의 관계식은 Eq. 2와 같이 표현하며, L_i 는 Eq. 3과 같이 표현할 수 있다.

$$\sum_{i=1}^{n} \frac{G_{m_{i}}}{L_{i}} = 1$$
 (2)

$$L_i = \frac{P_{i,fp}^{sat}}{P} \tag{3}$$

Eq. 3에서 $P_{i,fp}^{sat}$ 는 i성분의 인화점에서의 포화 증기압, *P*는 전체압력이다. Liaw 등[18]은 Eq. 2 에 Eq. 1과 Eq. 3을 대입하여 다음의 Eq. 4를 제 안하였다.

$$\frac{X_1 P_1^{sat}}{P_{1,fp}^{sat}} + \frac{X_2 P_2^{sat}}{P_{2,fp}^{sat}} + \frac{X_3 P_3^{sat}}{P_{3,fp}^{sat}} = 1$$
(4)

Eq. 4를 활용하여 바이오항공유의 인화점을 예 측하기 위하여 본 논문에서는 n-pentane, n-hexane, n-heptane, n-octane, n-nonane, n-decane, n-undecane의 몰 분율에 따른 상관관계를 Eq. 5 와 같이 표현할 수 있다.

$$\frac{X_{C_5}P_{C_5}^{sat}}{P_{C_5,fp}^{sat}} + \frac{X_{C_6}P_{C_6}^{sat}}{P_{C_6,fp}^{sat}} + \frac{X_{C_7}P_{C7}^{sat}}{P_{C7,fp}^{sat}} + \frac{X_{C_9}P_{C7}^{sat}}{P_{C7,fp}^{sat}} + \frac{X_{C10}P_{C10}^{sat}}{P_{C10,fp}^{sat}} + \frac{X_{C11}P_{C11}^{sat}}{P_{C11,fp}^{sat}} = 1$$
(5)

Table 2. Antoine coefficients and Lower Explosive Limits (LEL) of pure substances.

i	Flash point (℃)	LEL (%)	А	В	С
n-pentane	-49.00	1.4	6.87632	1075.78	233.205
n-hexane	-26.00	1.2	6.87024	1168.72	224.210
n-heptane	-3.98	1.0	6.89385	1264.37	216.636
n-octane	13.00	1.0	6.90940	1349.82	209.385
n-nonane	31.00	0.8	6.93440	1429.46	201.820
n-decane	46.11	0.8	6.96375	1508.75	195.374

여기서 $P_{Cn,fp}^{sat}$ 는 노말 파라핀의 탄소수 C_n 에 따른 인화점에서의 포화증기압을 나타내며, X는 C_n 성분의 몰 분율을 나타낸다.

바이오항공유에 존재하는 다양한 탄화수소 화 합물들은 온도에 따라 계면에서의 몰 분율 및 포화증기압이 변화되며, 이로 인하여 인화점이 변화된다. 이러한 온도에 따른 포화증기압의 변 화를 계산하기 위하여 Eq. 5의 $P_{i,fp}^{sat}$ 과 P_{i}^{sat} 는 아 래의 Antoine Eq. 6에 의해 계산하였다[19].

$$\log P_i^{sat} = A_i - \frac{B_i}{T + C_i} \tag{6}$$

A_i, *B_i*, *C_i*는 *i*성분의 Antoine 상수 이며, *T*의 단위는 섭씨온도(℃)이며, *P_i^{sat}*의 단위는 mmHg이 다. 계산에 필요한 각 물질들의 Antoine 상수를 Table 2에 제시하였다[20]. 이를 통하여 Eq. 6을 만족시키는 온도를 계산하였고, 그 온도를 라울 의 법칙에 의한 바이오항공유 인화점으로 결정 하였다.

3. 결과 및 고찰

3.1 바이오항공유의 인화점 시험결과

Table 3에는 바이오항공유의 탄화수소별 몰 분 율과 태그 밀폐식 인화점시험기(Tag Closed Flash Point Tester)를 통한 바이오항공유의 인화점 측

제27권 제4호 2023. 8.

바이오항공유 규격화를 위한 인화점 측정과 라을의 법칙 기반 예측모델의 비교연구

정값을 제시하였다. 몰 분율은 전체 바이오항공 유의 인화점 규격은 38 ℃이다. 정확한 인화점의 유 중 각 성분의 분율을 나타내었다. 바이오항공

예측을 위하여 인화점 규격을 불만족(Case 1~

	Flash point	nt Mole Fractions (%)						
Case No.	(°C)	C5	C6	C7	C8	C9	C10	C11
1	28.5	0.07	0.16	1.68	6.3	15.29	22.5	18.66
2	29.0	0.05	0.18	1.71	6.47	15.57	21.51	20.06
3	29.0	0.04	0.25	2.06	6.51	14.2	19.75	18.3
4	29.5	0.08	0.18	2.03	7.00	15.31	22.56	21.43
5	30.5	0.08	0.17	1.76	6.30	14.67	22.14	21.25
6	31.5	0.07	0.10	1.28	5.41	13.54	21.96	18.48
7	32.0	0.22	0.08	1.56	5.63	13.42	19.92	19.05
8	32.5	0.10	0.08	1.23	5.16	15.36	23.48	20.88
9	33.0	0.11	0.08	1.52	5.31	12.64	19.75	19.29
10	33.5	0.02	0.07	0.94	5.00	12.65	21.4	22.39
11	34.0	0.11	0.05	0.92	4.30	14.14	22.12	22.09
12	34.5	0.05	0.05	0.97	5.10	11.92	19.83	20.76
13	35.5	0.03	0.05	0.61	4.68	11.81	20.25	21.76
14	36.0	0.04	0.01	0.65	3.74	11.23	21.5	23.94
15	36.5	0.15	0.03	1.16	5.19	12.98	21.33	21.05
16	37.0	0.07	0.01	1.02	4.30	11.46	20.71	23.04
17	37.0	0.02	0.03	0.61	4.87	11.87	20.97	21.96
18	37.5	0.10	0.04	0.71	3.99	11.38	20.68	23.38
19	37.5	0.01	0.05	0.72	4.73	12.28	21.18	21.99
20	38.0	0.10	0.10	0.95	4.23	11.09	19.78	21.91
21	38.5	0.17	0.08	0.74	3.26	9.40	19.27	22.88
22	39.0	0.06	0.06	0.89	4.04	10.91	19.32	21.63
23	39.5	0.04	0.02	0.71	3.88	11.31	20.86	22.52
24	40.0	0.08	0.01	0.59	3.48	10.22	19.32	22.36
25	40.5	0.05	0.09	0.64	2.87	8.00	16.01	19.91
26	41.0	0.06	0.02	0.53	3.37	10.13	18.81	21.6
27	43.0	0.02	0.02	0.30	2.56	9.16	18.17	19.47
28	43.5	0.02	0.02	0.30	2.82	7.47	15.62	20.39
29	44.0	0.08	0.03	0.29	2.22	8.17	17.4	21.84
30	45.5	0.03	0.00	0.07	1.15	6.23	16.88	22.89
31	46.0	0.04	0.01	0.06	0.97	6.11	17.15	23.75
32	47.5	0.06	0.02	0.09	1.11	6.38	18.36	25.88
33	49.0	0.07	0.02	0.07	0.70	5.53	19.11	24.12
34	50.0	0.04	0.01	0.08	1.05	5.94	17.9	26.19
35	51.0	0.07	0.02	0.06	0.84	6.03	20.4	27.56

Table 3. Flash points of bio-jet fuel according to mole fractions.

19)하는 결과와 만족(Case 20~35)하는 결과를 사용하여 인화점을 예측하였다. 서로 다른 조성 을 가진 총 35개의 샘플 시료에 대한 GC-MS 분

Fig. 2 Correlation between mole fraction and flash point.

Fig. 3 Correlation of calculated flash points by Raoult's law with experimental flash points of bio-jet fuel.

Carbon number	Regression equation
C5	y = -0.0017x + 0.1331
C6	y = -0.0071x + 0.3322
C7	y = -0.0861x + 4.1168
C8	y = -0.2782x + 14.536
С9	y = -0.4721x + 28.912
C10	y = -0.2099x + 27.92
C11	y = 0.2455x + 12.513

Table 4. Regression equation by carbon number.

석결과로 바이오항공유내 탄화수소를 탄소수별 로 구분하였다. 증류 공정을 통해 분리된 바이오 항공유는 Table 3에 제시된바와 같이 경질 탄화 수소인 탄소수 C5와 C6의 탄화수소 분율은 약 0.1% 미만으로 매우 소량 함유되어 있다. C7은 최대 2.5% 포함되어 있으며, C8은 최대 7.5% 함 유되어 있다.

바이오항공유에 포함되어 있는 탄화수소 화합 물의 탄소수 범위는 C8-C15 범위이며, 탄화수소 화합물 별 몰 분율을 측정한 결과 C9~C11 범 위의 탄화수소 화합물이 52.8%로 과반수임을 확 인하였다. 대부분의 증류 조건에서 C6 이하의 경질탄화수소가 존재하였으나, 0.1% 수준의 극미 량 존재하여 인화점에 미치는 영향은 미미할 것 으로 판단된다. 태그 밀폐식 인화점 시험기(Tag Closed Flash Point Tester)를 통한 바이오항공유 의 35개 샘플의 인화점 측정값은 경질탄화수소 의 비율이 높은 샘플일수록 인화점이 낮은 것을 경질탄화수소의 순수물질의 낮은 인화점에서 기 인됨을 예측케 한다[21].

Fig. 2에는 바이오항공유내 탄소수 C5~C11의 탄화수소의 몰 분율과 측정된 인화점과의 상관 관계를 나타내었다. 바이오항공유 내부의 탄화수 소의 분포에 따라 인화점이 변화되는 것을 확인 할 수 있다. 각 탄화수소와 인화점의 상관관계를 추세선으로 표현하였으며, 탄소수별 추세식을 Table 4에 나타내었다. 추세선의 기울기가 클수 록 인화점과 상관관계가 높은 것으로 판단할 수 있다. 또한, 기울기의 값이 음수일 때는 해당 탄 화수소의 분율이 증가함에 따라 인화점이 낮아지 며, 기울기의 값이 양수일 때는 해당 탄화수소의 분율이 증가함에 따라 인화점이 증가하게 된다.

3.2 바이오항공유의 인화점 예측결과

Fig. 3은 앞서 제시한 Eq. 5를 사용하여 예측 한 인화점을 결과와 측정값과의 상관관계를 나 타낸 그래프이다. 라울의 법칙을 활용하기 위하 여 바이오항공유를 이상용액으로 가정하였다. 인 화점 예측 결과와 측정값의 상관관계를 확인한 결과 R²값이 = 0.90으로 높은 상관관계를 가지는 예측 값들을 얻을 수 있었다. 바이오항공유는 사 슬형 탄화수소가(노말 파라핀, 아이소 파라핀)이 대부분인 연료이며, 탄소와 수소를 제외한 기타 물질이 존재하지 않는다. 또한 대부분 탄소수 C8~C15 범위에 집중되어 있다[22]. 따라서 동일 한 분자구조를 가지면 좁은 탄소수 범위를 가지 는 바이오항공유는 내부 화합물간의 인력차이가 크지 않으며, 바이오항공유를 이상용액으로 가정 한 라울의 법칙에 의해 계산된 인화점은 실험값 에 근접할 수 있었다고 사료된다.

4. 결 론

본 연구에서는 HEFA 공정을 통해 팜유로부터 제조된 바이오항공유 내 탄화수소 화합물의 몰 분율 분포와 인화점을 측정하여 상관관계를 확 인하였다. 그 결과 경질탄화수소가 바이오항공유 의 인화점에 미치는 영향이 큰 것을 확인하였다. 경질탄화수소의 몰 분율 데이터를 활용하여 라 울의 법칙을 적용하여 바이오 항공유 인화점 산 출식을 제안하였고, 실제 측정값과의 정확도를 비교한 결과 상관관계가 0.90으로 확인되었다. 몰 분율을 바탕으로 예측한 인화점과 실제 인화 점의 상관관계가 높은 이유는 바이오항공유가 대부분 노말 파라핀과 아이소 파라핀으로 구성 되어 있으며, 그 결과 탄화수소 화학물 사이의 인력의 크기가 일정하게 작용하기 때문으로 판 단된다. 다만, 석유계 항공유와 같이 사이클로 파라핀, 방향족 화합물이 혼합되어 있는 연료의 경우 각 고려해야 할 변수가 증가하기 때문에 본 연구에서 도출된 산출식을 적용하였을 때 예 측의 정확도가 감소할 것으로 판단된다. 추후 연 구에서는 GC-MS를 활용하여 노말 파라핀, 아이 소 파라핀, 사이클로 파라핀, 방향족 화합물의 정성과 정량을 통하여 몰 분율 및 구조에 따른 인화점 예측 연구를 수행하고자 한다. 바이오항 공유는 항공부문의 탄소 저감을 위하여 반드시 필요한 연료이며, 연구개발이 진행될 것으로 예 측된다. 향후 제조 및 사용이 증가될 것으로 예 측되는 바이오항공유 취급에 있어 유용한 기초 자료로 활용될 수 있을 것으로 사료된다.

후 기

본 연구는 산업통상자원부(MOTIE)와 한국에 너지기술평가원(KETEP)의 지원을 받아 수행한 연구 과제입니다. (No. RS-2023-00244070)

References

- 1. The International Air Transport Association, *IATA Sustainable Aviation Fuel Road map*, 1st ed., pp. 3-20, 2015.
- Kim, J.K., Park, J.Y., Yim, E.S., Min, K.I., Park, C.K. and Ha, J.H., "Bio-Jet Fuel Production Technologies for GHG Reduction in Aviation Sector," *Transaction of the Korean Hydrogen and New Energy Society*, Vol. 26, No. 6, pp. 609-628, 2015.
- Ameen, M., Azizan, M., Yusup, S., Ramli, A. and Yasir, M. "Catalytic hydrodeoxygenation of triglycerides: An approach to clean diesel fuel production," *Renewable and Sustainable Energy Reviews*, Vol. 80, pp. 1072-1088, 2017.
- IRENA, Biofuels for Aviation: Technology Brief, 1st ed., International Renewable Energy Agency, Abu Dhabi, United Arab Emirates, Ch. 1, 2017.
- Kang, S.B., Han, J.S. and Jeong, B.H., "Comparison of Ignition Delay Time of Petroleum-Based and Bio Aviation Fuel," *Journal of the Korean Society of Propulsion Engineers*, Vol. 22, No. 6, pp. 118-125, 2018.
- Kim, J.S. and Jae, S.K., "A Study on the Flammability and Combustion Risk of Biodiesel Mixture," *Journal of the Society of Disaster Information*, Vol. 17, No. 1, pp. 10-24, 2021.
- Lee, C.J., Ko, J.W. and Lee, G.B., "Comparison of Partial Least Squares and Support Vector Machine for the Flash

Point Prediction of Organic Compounds," *Korean Chemical Engineering Research*, Vol. 48, No. 6, pp. 717-724, 2010.

- Moghaddam, A.Z., Rafiei, A. and Khalili. T., "Assessing Prediction Models on Calculating the Flash Point of Organic Acid, Ketone and Alcohol Mixtures," *Fluid Phase Equilibria*, Vol. 316, pp. 117-121, 2012.
- Balasubramonian, S., Srivastav, R.K., Kumar, S., Sivakumar, D., Sampath, M., Mudali, U.K. and Natarajan, R. "Flash Point Prediction for the Binary Mixture of Phosphatic Solvents and N-Dodecane from UNIFAC Group Contribution Model," *Journal* of Loss Prevention in the Process Industries, Vol. 33, pp. 183-187, 2015.
- Ha, D.M. and Lee, S.J., "The Calculation of Flash Point for n-Nonane+n-Decane+n-Tridecane System by Raoult's Law and Multiple Regression Analysis," *Journal of the Korean Institute of Gas*, Vol. 22, No. 2, pp. 52-58, 2018.
- Nascimento, D.C., Conti, D.C., Neto, A.M.B. and Costa, M.C., "Flash Point Measurement and Prediction of Dodecane + Ethanol + FAEE Systems," *Fuel*, Vol. 306, pp. 121723-121733, 2021.
- Haghtalab, A., Seyf, J.Y. and Mansouri, Y., "Flash Point Prediction of the Binary and Ternary Systems Using the Different Local Composition Activity Coefficient Models," *Fluid Phase Equilibria*, Vol. 415, pp. 58-63, 2017.
- Torabian, E. and Sobati, M.A., "New Models for Predicting the Flash Point of Mixtures Containing Different Alcohols," *Process Safety and Environmental Protection*, Vol. 111, pp. 439-448. 2017.
- Han, G.B., Jang, J.H., Ahn, M.H., Suh, Y.W., Choi, M.K., Park, N.K., Lee, M.E., Kim, J.K. and Jeong, B.H., "Operation of Bio-Aviation Fuel Manufacturing Facility

via Hydroprocessed Esters and Fatty Acids Process and Optimization of Fuel Property for Turbine Engine Test," *Korean Journal of Chemical Engineering Korean*, Vol. 38, No. 6, pp. 1205-1223, 2021.

- Schmitz, K.S., *Physical Chemistry*, 1st ed., Elsevier, Amsterdam, Netherlands, Ch. 5, 2017.
- H. Le Chatelier, "Esimation of Firedamp by Flammability Limits," Annales des Mines, Vol. 19, pp. 388-392, 1891.
- Liaw, H.J., Lee, Y.H., Tang, C.L., Hsu, H.H. and Liu, J.H., "A Mathematical Model for Predicting the Flash Point of Binary Solution," *Journal of Loss Prevention in the Process Industries*, Vol. 15, No. 6, pp. 429-438, 2002.
- Liaw, H.J., Tang, C.L. and Lai, J.S., "A Model for Predicting the Flash Point of Ternary Flammable Solutions of Liquid," *Combust and Flame*, Vol. 138, No. 4, pp. 308-319, 2004.
- Poling, B.E., Prausnitz, J.M. and O'Connell, J.P., *The Properties of Gases and Liquids*, 5th ed., McGraw Hill, N.Y., U.S.A., Ch. 7, 2000.
- "n-pentane, n-hexane, n-heptane, n-nonane, n-decane," retrieved 5 Apr. 2023 from https://www.nist.gov/.
- Santos, S.M., Nascimento, D.C., Costa, M.C., Neto, A.M.B. and Fregolente. L.V., "Flash Point Prediction: Reviewing Empirical Models for Hydrocarbons, Petroleum Fraction, Biodiesel, and Blends," *Fuel*, Vol. 263, pp. 116375-116385, 2020.
- Chintakanan, P., Vitidsant, T., Reubroycharoen, P., Kuchonthara, P., Kida, T. and Hinchiranan. N., "Bio-Jet Fuel Range in Biofuels Derived from Hydroconversion of Palm Olein over Ni/Zeolite Catalysts and Freezing Point of Biofuels/Jet A-1 Blends," *Fuel*, Vol. 293, pp. 120472-120483, 2021.