Research Paper

DOI: https://doi.org/10.6108/KSPE.2022.26.2.001

축소 확대 노즐의 열전달 해석을 위한 열전달 계수 계산 및 검증

노태원* · 노태성* · 이형진** · 이현섭* · 유필훈*

Comparative Evaluation on the Deriving Method of the Heat Transfer Coefficient of the C-D Nozzle

Tae Won Noh^a · Tae-Seong Roh^a · Hyoung Jin Lee^{a,*} · Hyunseob Lee^b · Phil Hoon Yoo^b ^a Department of Aerospace Engineering, Inha University, Korea ^b Rocket Propulsion, Mechanical R&D, LIG Nex1, Korea ^{*} Corresponding author. E-mail: hyoungjin.lee@inha.ac.kr

ABSTRACT

The heat transfer coefficient on the wall, which is used as a boundary condition in the thermal analysis of general contract-divergent supersonic nozzles, affects the thermal analysis accuracy of the entire nozzle. Accordingly, many methods of deriving a heat transfer coefficient have been proposed. In this study, the accuracy of each method was compared. For this purpose, the heat transfer coefficients were calculated through theoretical-based analogy methods, semi-empirical equations, and CFD simulations for the previously performed heat transfer experiment with an isothermal wall and compared with the experimental results. The results show that the Prandtl-Taylor analogy methods and the CFD results with the k- ω SST turbulence model were in good agreement with the experimental results. Furthermore, the Modified Bartz empirical formula showed an overall over-prediction tendency.

초 록

일반적인 축소 확대형 초음속 노즐에 대한 열해석에서 경계조건으로 사용되는 벽면의 열전달 계수는 노즐 전체의 열해석 정확도에 영향을 미친다. 이에 많은 열전달계수 도출 방법이 제안되어 왔으며, 본 연구에서는 각각의 기법들을 실제 실험 조건에서 열전달 계수를 계산하고 비교하고자 하였다. 이를 위해 기 수행된 벽면 등온 노즐의 열전달실험에 대해 이론 기반의 analogy 기법과 반경험식, 유체전산해석을 통해 열전달 계수를 도출하고 실험결과와 비교하였다. 해석 결과는 반경험식들은 전 반적으로 다른 방법에 비해 대류 열전달 계수를 과도하게 예측하고, Prandtl-Taylor analogy 기법과 k- ω SST 모델을 적용한 전산해석 결과가 실험결과와 비교적 잘 일치하는 경향성을 보였다.

Key Words: Heat Transfer Coefficient(열전달 계수), Bartz Equation(Bartz 식), Supersonic Nozzle(초 음속 노즐), CFD(전산 유체 역학)

This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License(http://creativecommons.org /licenses/by-nc/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Received 2 December 2021 / Revised 4 February 2022 / Accepted 10 February 2022 Copyright © The Korean Society of Propulsion Engineers pISSN 1226-6027 / eISSN 2288-4548

Nomenclature

A	: Nozzle cross section area
A_*	: Nozzle cross section area at throat
С	: Constant
C_p	: Specific heat at constant pressure
C^{*}	: Characteristic velocity
D_*	: Diameter of nozzle throat
γ	: Specific heat ratio
h	: Heat transfer coefficient
k	: Thermal conductivity of gas
K_T	: Temperature correction factor
'n	: Mass flow rate
M	: Mach number
μ_c	: Viscosity at stagnation condition
Nu	: Nusselt number
P_c	: Pressure at chamber
Pr	: Prandtl number
\dot{q}	: Heat flux
Re	: Reynolds number
C_{f}	: Skin friction coefficient
r _c	: Curvature at nozzle throat
ρ	: Density of gas
u	: Velocity of gas
T_0	: Hot gas temperature at axis
T_{aw}	: Adiabatic wall temperature
T_{wg}	: Gas side wall temperature

1. 서 론

로켓의 축소 확대 노즐은 비행체의 추력을 발 생시키는 구성품 중 하나로 고온의 연소 가스를 팽창시키므로, 열전달 해석을 통한 내열성 및 냉 각의 필요성 판단이 중요하다. 최근 전산해석 역 량이 증대됨에 따라 노즐 내 유동과 구조체의 열전달 현상을 연동하기 위한 노력이 증대되고 있으나, 열전달 현상에 미치는 요인이 많고, 발 생하는 현상이 복잡하다. 유동해석과 구조체의 열전달 해석을 위해 열전달 계수는 경계조건으 로 사용된다. 이러한 열전달 계수의 추출은 실험 을 통해 주로 수행되고 있으며, 설계 초기 단계 에서는 빠른 해석을 위해 실험 기반의 반경험식 을 널리 활용하고 있다.

대류 열전달 계수는 Reynolds analogy에서부 터 시작하여, Prandtl-Taylor analogy, Von Karman Analogy, Dittus Equiaton[1-3] 등이 경계층 내 열전달과 운동량 상사에 기반하여 도출되었다. 이후 추가 실험을 통해 보다 정교한 변형식들이 보고된 바 있다[3,4,12,13]. 이러한 반경험식들의 열전달 해석결과는 유동해석과 열전달 해석을 동시에 진행하는 전산해석 결과와 차이를 보인 다. Betti[5]는 Schuff 등[6]이 설계한 LOX/CH4 팽창기 사이클 이론엔진의 노즐과 냉각채널을 전산해석과 Bartz 식을 이용하여 열전달 해석을 진행하였다. 경험식에 따라 열유속, 벽면온도, 냉 각재의 온도 및 압력의 결과 차이를 보고하였으 며 전산해석을 통해 노즐 벽면에서 열전달 계수 를 예측하였다[7,8]. 국내에서는 Hahm 등[9]은 Back 등[10]의 초음속 노즐에서의 열전달 실험에 대해 전산해석과 Bartz 식을 통해 열전달 계수를 추출하고 그 결과의 차이를 보였다. Kim 등[11] 역시 전산해석, 경계층 적분법, Bartz 식을 이용 하여 Back 등의 동일 실험 형상에 대해 열전달 계수를 수치적으로 계산하고 이를 복합재로 구 성된 NASA HIPPO 노즐에 적용하여 열반응 해 석을 수행한 바 있으며 Back 등이 수행한 초음 속 노즐 실험에 대해 해석한 결과는 Hahm 등[9] 이 수행한 결과와 유사한 정도를 보였다.

열전달 계수 예측을 위해 다양한 반경험식들 이 제시되어 있으며, 각각의 식들은 동일 조건에 서 서로 다른 결과를 예측한다. 그러나, 이에 대 한 정확도나 반경험식 간의 차이에 대한 평가가 수행되지 않았으며, 전산해석 결과와의 비교 또 한 제한적으로만 보고되어 있다. 이에 본 연구에 서는 노즐의 열전달 해석을 위한 다양한 대류 열전달 계수 추출 방법들을 종합적으로 비교하 고 그 차이를 제시하는 것을 목적으로 하였다. 이를 위해 해외에 보고된 노즐 열전달 해석과 실험 사례를 선정하고 이론 기반 analogy 기법 과 반경험식들을 이용하여 열전달 해석을 수행 하여 비교하였다. 등온 벽면 노즐[10]에 대한 열 전달 계수를 이론기반 식들과 반경험식을 1D 등 엔트로피 관계식을 통한 유동 특성치로부터 계 산하였으며, 2D 축대칭 전산해석을 통해 열전달 계수를 도출하여 최종적으로 이론 기반 식, 반경 험식, 전산해석, 실험결과를 비교하여 그 차이를 제시하였다.

2. 이론 기반 및 반경험식 열전달계수 도출

2.1 이론 기반

노즐의 열전달 해석을 진행하기 위해서는 벽 면에서의 열전달 계수를 확보하여야 한다. 서론 에서 언급한 바와 같이 반경험식과 그에 기반한 보정식들이 보고되어 활용되고 있다. 본 절에서 는 해당 반경험식에 대해 간략하게 설명하고, 본 연구에서 이에 대한 정확도를 평가하기 위해 적 용한 방법 등을 정리하여 제시하였다.

Reynolds analogy는 경계층 내 운동량과 열전 달의 상사관계를 기반으로 Eq. 1, 2와 같이 열전 달 계수는 표면 마찰계수의 함수로 표현된다.

$$h = \frac{C_f}{2} \rho u C_p \tag{1}$$

$$\frac{C_f}{2} = \frac{0.023}{Re_D^{0.2}} \tag{2}$$

그러나 Reynolds Analogy으로 도출된 Eq. 1 의 경우 Pr≠1의 경우, 기술한 관계가 맞지 않게 되어 로켓 등 실제 운용되는 노즐 유동에 적용 하는 것이 어렵다. Prandtl-Taylor analogy는 이 를 보완하기 위해 경계층 내 Laminar sublayer에 서는 열전도식을, Turbulent core에서는 Reynolds analogy를 적용하여 다음 Eq. 3과 같이 표현하 였다[1].

$$h = \rho u C_p \frac{\frac{C_f}{2}}{1 + 5\sqrt{\frac{C_f}{2}} (\Pr - 1)}$$
(3)

Von Karman은 laminar sublayer와 turbulent core 사이에 존재하는 buffer layer까지 고려하였 으며 열전달 계수는 Eq. 4와 같이 표현하였다[1]. 다음으로 Colburn은 실험을 통해 열전달과 물질 전달 사이의 관계를 규명하고 j-factor를 통해 Eq. 5를 제안하였다[2].

$$h = \rho u C_{p} \frac{\frac{C_{f}}{2}}{1 + 5\sqrt{\frac{C_{f}}{2}} (\Pr - 1)}$$
(4)

$$h = \rho u C_p \frac{C_f}{2} \operatorname{Pr}^{-2/3}$$
(5)

2.2 반경험식 기반

(a) Bartz equation

Bartz[3]는 1957년 초음속 노즐 내부의 열전달 해석을 위해 Nusselt number(Eq. 6)를 이용한 열전달 계수식(Eq. 7)을 제시하였다. Eq. 7는 Eq. 6에서 *C*=0.026, *m*=0.8, *n*=0.4를 적용하였으 며, 는 노즐의 경계층 내부에서 온도에 따른 물 성치 변화에 대한 보정계수이다. 보정계수(Eq. 8) 에서 ω는 Huzel 등[12]이 제시한 ω=0.6이 적용 되었다.

$$Nu = C(Re)^m (\Pr)^n \tag{6}$$

$$h = \left[\frac{0.026}{D_*^{0.2}} \left(\frac{\mu_c^{0.2} C_p}{\Pr^{0.6}}\right) \left(\frac{P_c}{C^*}\right)^{0.8}\right] \left(\frac{A_*}{A}\right)^{0.9} \sigma \tag{7}$$

$$\sigma = \left[\left(\frac{\rho_{ref}}{\rho} \right)^{0.8} \left(\frac{\mu_{ref}}{\mu_c} \right)^{0.2} \right] \\ = \left[\frac{1}{2} \frac{T_{wg}}{T_0} \left(1 + \frac{\gamma - 1}{2} M^2 \right) + \frac{1}{2} \right]^{-(0.8 - (\omega/5))} \\ \times \left[1 + \frac{\gamma - 1}{2} M^2 \right]^{-(\omega/5)}$$
(8)

 (b) Bartz equation with nozzle curvature correction 이후 Eq. 7에 노즐의 곡률 반경에 대한 보정 계수 (D_{*}/r_c)^{0.1} 항이 추가된 Eq. 9가 제시되었다 [3,4].

$$h = \left[\frac{0.026}{D_*^{0.2}} \left(\frac{\mu_c^{0.2} C_p}{\Pr^{0.6}}\right) \left(\frac{P_c}{C^*}\right)^{0.8} \left(\frac{D_*}{r_c}\right)^{0.1}\right] \left(\frac{A_*}{A}\right)^{0.9} \sigma \qquad (9)$$

(c) Modified Bartz Equation

경계층 내 온도에 따른 보정을 μ_{ref}를 이용하 여 Eq. 10이 제시되었다. ω(Eq. 8)를 이용하지 않고 Eq. 8과 Eq. 9를 이용하여 Eq. 10을 유도하 였다. μ_{ref}는 노즐의 벽면과 중심축 사이의 중간 위치에서의 값으로 정의된다[4].

$$h_g = 0.026 \mu_{ref}^{0.2} C_p^{0.4} \left(\frac{k}{\mu_{ref}}\right)^{0.6} \left(\frac{\dot{m}^{0.8}}{A^{0.9}}\right) \left(\frac{\pi D_*}{4r_c}\right)^{0.1} \quad (10)$$

(d) Pavli equation

Pavli 등[13]은 1966년 Eq. 6에 C = 0.023, m = 0.8, n = 0.4를 적용하였고 온도에 의한 보정 계수 (K_T) 를 추가하였다. 이때, Eq. 11의 유도과 정에서 K_T 는 Eq. 6의 Re에 포함되므로 지수는 e = 0.8(Eq. 12)로 정해진다.

$$h = 0.023 R e^{-0.2} \Pr^{-0.6} C_p \left(\frac{m}{A}\right) K_T$$
(11)

$$K_T = \left(\frac{T_{aw}}{T_{ref}}\right)^e, \ T_{ref} = \frac{T_0 + T_{wg}}{2}$$
 (12)

3. 전산해석을 통한 열전달 계수 산출

난류모델, 벽함수 등 전산해석 기법의 발전으 로 다양한 유동해석을 연계한 열전달 해석이 전 산해석을 통해 수행되고 있다. 본 연구에서는 전 산유체역학(CFD)을 이용하여 경계층 발달, 벽면 온도 조건, 벽면 근처 격자 크기에 따른 벽면의 열유속을 도출하고 뉴턴의 냉각법칙을 사용하여 대류 열전달 계수를 도출하고 반경험식으로부터 도출된 결과와 비교하였다.

3.1 해석 대상 노즐

반경험식과 전산해석을 통해 도출한 열전달 계수의 정확도를 실험 결과와의 비교를 통해서 검증하였다. 검증 모델로 Fig. 1과 같이 고체 로 켓 등에 널리 활용되는 일반적인 축소 확대 초 음속 노즐을 연구 대상으로 하였다.

본 연구에서 선정한 벽면 등온 노즐은 Back 등[10]의 실험에 적용된 축대칭 노즐로, 축소부 반각은 30°이고, 확대부 반각은 15°이다. 열전달 계수 추출을 위한 전산해석의 벽면 조건으로는 실험을 통해 측정된 벽면 온도 결과를 지점별로 적용하고 사이에 해당하는 값은 보간하여 적용 하였다.

3.2 전산해석 기법

노즐의 유동 및 열전달 해석은 정상상태로 가 정한 2차원 축대칭 지배방정식에 대해 상용 전 산해석 프로그램(Star ccm+, V14.0[14])의 밀도 기반 coupled solver를 활용하였다. 비점성 대류 항은 AUSM+ FVS를 적용하였고, MUSCL 기법 을 통해 3차 정확도를 유지하고, 확산항은 2차 중앙차분법을 적용하였다. 난류모델에 따라 벽면 근처의 유동을 다르게 해석하기 때문에 이에 따 른 특성을 관찰하고자 3가지 모델을 적용하여 그 결과를 비교하였다. 항공우주 및 유체기계 분 야에 널리 사용되고 있는 SA, k-ω SST 모델과,

Fig. 1 Nozzle configurations of Back's test model[10].

경계층에서 정확도가 떨어지는 단점을 보완하는 k-ɛ 2-layer 모델을 비교 대상으로 선정하였다. 각각의 난류모델의 벽면 처리는 all y+ 조건을 적용하였는데, y+가 낮을 때는 벽면 근처에서 유동을 직접 계산하며 y+가 높을 때는 벽함수를 사용한다[14]. 노즐의 경우 y+가 목 근처에서 가 장 높게 나타나며 주변으로 점차 낮아지는 유동 해석 특성을 나타내므로 buffer layer 영역의 유 동을 Blending 함수를 통해 계산하는 all y+ 처 리 기법을 적용하는 것이 적합하다고 판단하였 다. 해석을 위한 경계조건은 실험조건과 동일하 게 부여하였으며 열전달 계수는 Karder의 법칙 [15]을 통해 다음과 같이 추출하였다.

$$T^{+} = e^{-T} \operatorname{Pr}_{y^{+}} + e^{-\frac{1}{T}} \operatorname{Pr}_{t} \left[\frac{1}{\kappa} \ln(E'y^{+}) + P \right]$$
(13)

$$\dot{q} = \frac{\rho C_p u_\tau}{T^+} (T_{wg} - T_{First cell})$$
(14)

$$y^{+} = \frac{y\rho u_{*}}{\mu} \tag{15}$$

$$\Gamma = \frac{0.01c(\Pr y^+)^4}{1 + \frac{5}{c}\Pr^3 y^+}$$
(16)

$$P = 9.24 \left[\left(\frac{\mathrm{Pr}}{\mathrm{Pr}_t} \right)^{3/4} - 1 \right] \left[1 + 0.28e^{-0.007 \frac{\mathrm{Pr}}{\mathrm{Pr}_t}} \right]$$
(17)

$$c = e^{f-1} \tag{18}$$

$$E' = \frac{E}{f} \tag{19}$$

$$h = \frac{\dot{q}}{T_{aw} - T_{wg}} \tag{20}$$

$$T_{aw} = T_t \frac{(1 + \Pr^{1/3} \frac{\gamma - 1}{2} M^2)}{(1 + \frac{\gamma - 1}{2} M^2)}$$
(21)

여기에서, 벽함수에서 변수 Pr은 Prandtl number, Pr_t는 난류 Prandtl number, κ는 von karman constant, *E*는 벽면법칙계수의 log law offset, *f*는 거칠기 함수를 의미하며 *Γ*는 Blending function으로 첫 번째 격자까지의 거리 수준에 따라 적절한 벽면 근처의 유동이 모사될 수 있 도록 한다. 노즐 내벽의 대류 열전달 계수는 전 산해석을 통해 계산된 *q*와 *T*_{aw}를 이용하여 계산 되므로, 해석된 유동의 *y*⁺와 첫 번째 격자의 온 도에 의존하며, 이는 난류 모델, 벽 함수, 격자에 따라 달라진다.

전산해석에 사용한 Back 등[10]의 실험에서는 압축 공기와 메탄올을 충분히 희박한 혼합비로 혼합하므로 유동기체는 공기로 간주할 수 있어 본 연구에서는 공기의 물성치를 해석에 적용하 였다[9]. 본 연구에서 모사한 Test. 315의 챔버 압력과 온도는 74.6 psi, 842.2 K이다. 격자는 벽 면 근처의 거리를 1 um로 설정하여 난류 모델 에 따른 결과를 비교하고자 하였다. 비교를 위해 설정한 무차원 거리는 $y^+ = ~1$ 수준이며, 총 격 자수는 약 40,000개 수준이다. Fig. 2에 해석을 위해 적용한 격자계의 형상을 제시하였고, 경계 조건은 Back의 실험을 모사할 수 있도록 하였다. 노즐 벽면에서 경계조건은 비점착, 등온 조건으 로 실험에서 측정된 지점의 벽면 온도를 적용하 였으며 지점들 사이에 해당하는 온도는 보간을 통해 적용하였다. 입구 조건은 정체 조건으로 실

Fig. 2 Grid configuration.

험과 동일한 압력과 온도를 적용하였고 노즐 출 구에는 외삽조건을 적용하였다. 공기의 열전도와 점성계수에는 Sutherland 법칙, 비열에는 온도에 따른 다항식 조건을 적용하였다.

4. 열전달 계수 평가 및 검증

4.1 이론 기반 Analogy 기법

Analogy 기법을 이용하여 Back[10]의 Test.316 조건에 대해 도출한 대류 열전달 계수를 Fig. 3 에 제시하였다. 계산에 필요한 밀도, 속도, 온도 는 1D 등엔트로피 관계와 면적비 마하수 관계를 이용하여 도출하였다. Colburn analogy를 통해 계산된 열전달 계수는 실험값과 노즐 목 근처에 서부터 큰 차이를 보이며 Prandtl-Taylor Analogy 를 통해 계산된 열전달 계수가 실험값과 가장 유사한 것을 확인할 수 있다. Reynolds analogy 를 제외한 Eq. 3-5를 비교하면, ρuC_bC_f/2 은 동 일하며 제시된 기법별로 분모의 항이 다르게 적 용되어 열전달 계수의 차이가 발생한다. Von Karman 기법인 Eq. 4는 Prandtl-Taylor Analogy 인 Eq. 3의 분모에 로그항이 추가되는데 로그항 계산에 Pr가 적용된다. Back의 실험 모사에 적용 된 연소가스는 공기와 매우 유사하며 Pr<1이 다. Pr < 1이면 로그항이 음의 값으로 계산되고

Fig. 3 Heat transfer coefficient with analogy methods.

분모항의 값이 작아지게 되어 열전달 계수값은 Eq. 3에 비해 증가하게 된다. Pr을 포함하는 분 모의 계산결과는 Colburn analogy의 경우가 가 장 작아 열전달 계수값은 세 기법 중 가장 크게 도출되었다. 특히, 다른 두 analogy기법과 비교 하여 노즐목 근처에서 그 결과값이 증가하는데, Colburn analogy의 경우 분모가 Pr^{2/3}으로 노즐 축방향에 상관없이 거의 일정하므로 노즐 목에 서 실험값과 차이가 크게 증가한 것으로 판단된다.

4.2 반경험식 및 보정식

Bartz식과 이에 기반한 보정식들 역시 동일 시험인 test.315 조건을 적용하여 대류열전달 계 수를 도출하고 Fig. 4에 그 결과를 제시하였다. Bartz 또는 곡률 반경이 고려된 Bartz 경험식인 Eq. 7, 9를 통한 예측은 거의 유사한 결과를 나 타내었다. 두 식에서 서로 다른 항은 노즐의 곡 률 반경을 보정하는 항으로 Eq. 9의 *D*./*r*.에 해 당하는데, 노즐 목 직경(45.8 mm)과 곡률 반경 (45.7 mm)의 값이 유사하여 해당 항은 거의 1과 같아 두 식의 결과 차이가 없게 된다.

Bartz 경험식 중 노즐 목 곡률의 영향이 반영 된 Eq. 9와 수정된 Eq. 10을 비교하면 다른 항들 은 동일하고 <u>σ</u>_{μ^{0.4}}(Eq. 9), <u>1</u>_{μ^{0.4}_{ref}}(Eq. 10)에 의해 서 로 발생한다. 두 반경험식은 위의 두 항을 통해

Fig. 4 Heat transfer coefficient according to semiempirical equations.

벽면과 유동의 온도 차이에 대해 보정을 수행한 다. Eq. 7과 9는 연소실에서 물성치를 사용하고 σ 를 통해 보정을 하였으며 Eq. 10은 물성치 자 체를 경계층 내 유동의 온도를 가정하여 그때의 값으로 적용하여 보정한다. 두 방정식의 온도 보 정항의 결과를 Fig. 5의 좌측에 제시하였다. 온 도 보정항의 영향으로 Eq. 10이 노즐 축소부에 서 기존 Bartz equation에 비해 더 낮게 예측하 여 실험값과 유사하나 노즐 확대부에서는 기존 Bartz Equation과 유사한 것을 확인하였다.

Pavli의 Eq. 11은 노즐목의 곡률반경이 고려된 Bartz의 Eq. 9와 비교하여 상수항, 곡률보정, 온 도 보정항에서 차이가 난다. 먼저 곡률 보정항의 경우 앞에서 기술하였듯이 값이 1에 가까워 큰 영향이 없으므로, 제안된 열전달 경험식은 상수 항과 온도 보정항에 발생한 차이이며 두 항의 곱을 비교하여 Fig. 5의 우측에 제시하였다. Fig.

Fig. 5 Temperature correction in empirical equations.

5에서 Pavli의 온도보정항과 상수항의 곱은 노즐 목 이후에 차이가 점차 커지게 되고 확대부에서 Pavli식의 정확도가 점점 떨어지게 된다.

반경험식들은 서로 약간의 차이가 있으며 노 즐 축소부에서는 Bartz가 후속 연구로 보정한 Eq. 10의 결과가 확대부에서는 Bartz가 제안한 두가지 Eq. 7, 9의 결과가 실험결과에 가장 근접 하였으나 4가지 반경험식 모두 과대하게 예측하 는 것을 확인하였다.

4.3 전산해석을 통한 열전달 계수

난류 모델에 따른 열전달 계수를 분석하기 위 해 격자는 모두 공통적으로 $y^+ < 1$ 을 만족하도록 하였다. 난류 모델에 따른 유동해석 결과는 Fig. 6에 제시하였고 결과 내 경계층 영역을 흰 선으 로 표시하였다. 검정 세로 선은 기하학적 노즐 목의 위치를 나타낸다. 전체 유동장을 살펴보았 을 때 경계층 외부 유동은 차이가 없는 것을 확 인하였다.

유동장을 노즐 목 근처로 확대하면 Fig. 7과

Fig. 6 M, P, T contour according to turbulence model.

Fig. 7 M, P, T contour near wall of the throat according to turbulence model.

7

같다. Fig. 6과 마찬가지로 경계층을 흰색 선으 로 구분하여 나타내었다. Fig. 7의 확대된 유동 장을 살펴보면 마하수와 압력은 난류 모델에 따 라 큰 차이가 관찰되지 않으나, 경계층에서의 온 도는 차이가 관찰된다. 이로 인해 벽면에서 열유 속은 Eq. 14를 이용하여 계산되며 열전달 계수 는 Karder의 법칙으로 도출되었다. 난류 모델에 따른 계산 결과를 Fig. 8에 제시하였다. Fig. 8에 서 노즐 축소부에서는 모두 실험 결과에 비해 열유속이 크게 계산되었으며 노즐 확대부에서 난류모델에 따라 열유속은 큰 차이를 보이지 않 으며 실험과 유사하였다. SA 모델이 다른 모델

Fig. 8 Heat flux result according to turbulence model.

Fig. 9 Adiabatic wall temperature & wall pressure.

에 비해 벽면에서 열유속을 크게 예측하였으며 k-ω SST 모델이 실험 데이터와 가장 유사한 것 을 확인하였다. 난류 모델에 따른 벽면에서의 압 력과 벽면 단열 온도 Taw를 Fig. 9에 제시하였 다. Fig. 9를 살펴보면 난류 모델에 따라 벽면의 압력, 단열 벽면 온도는 차이가 없는 것을 확인 할 수 있다. 또한, 벽면 온도는 실험값으로 모든 난류 모델에서 같은 값을 가진다. 따라서 Eq. 20 으로부터 열유속의 차이로 인해 열전달 계수 값 의 차이가 발생하게 되는 것을 알 수 있다. 전산 해석에서 벽면의 열유속을 계산하는데 필요한 Karder의 법칙에 따른 열전달 계수 $(h_c = \frac{\rho C_p u_\tau}{T^+})$ 와 벽면과 첫 번째 격자의 온도 차이(dT)는 Fig. 10에 제시하였다. 난류 모델 간 h, 항의 차이는 약 0.01% 수준으로 벽면과 첫 번째 격자의 온도 차이(dT)에 의한 항이 열유속 계산에서 지배적 인 것을 알 수 있다.

Back[10] 등의 Test. 315의 실험조건을 이론 기반 analogy, 반경험식, 난류모델에 따른 전산 해석으로부터 도출한 열전달 계수 중 실험과 가 장 유사한 것들을 비교하여 Fig. 11에 제시하였 다. 반경험식들에서는 Modified Bartz 식이 가장 유사하였지만 다른 예측 방법들과 비교하였을 때 실험과 차이가 크며, 이론 기반 식인 Prandtl-Taylor analogy와 전산해석 결과는 실험과 유사

Fig. 10 $dT \& h_c$ at wall according to turbulence model.

하였다. 난류모델에 따라 경계층 유동이 다르게 계산되는데, k-ω SST가 벽면 근처 경계층 유동 과 복잡한 박리유동을 잘 모사한다고 알려져 있 으며[15], 본 연구에서도 k-ω SST 모델이 다른 모델에 비해 열유속과 열전달 계수가 실험과 유 사한 것으로 나타났다. 노즐 목 이후 확대부에서 약간 크게 예측한 Prandtl-Taylor analogy는 전 산해석과 비교하였을 때 노즐 축소부에서 실험 결과와 보다 잘 일치하였다.

도출된 결과의 경향성에 대해 추가적인 검증

Fig. 11 Heat transfer coefficient result according to method at Test. 315.

Fig. 12 Heat transfer coefficient result according to method at Test. 262.

을 수행하고 Fig. 12에 제시하였다. 참고문헌[9] 의 CFD 전산해석 결과는 Back의 Test. 262[10] 실험결과를 모사하여 전산해석을 수행한 결과로 본 연구의 전산해석의 검증자료로 사용하였으며 Test. 315의 결과와 유사한 것을 확인할 수 있다. Fig. 12에서도 Fig. 11에서와 마찬가지로 Prandtl-Taylor analogy를 사용하였을 때 축소부에서 실 험과 매우 잘 맞으며 확대부에서는 전산해석이 보다 유사한 것을 확인하였다.

5. 결 론

노즐에서의 열전달계수 예측을 위해 다양한 기법들이 보고되어 왔으나 각각의 기법들을 적 용한 결과 비교에 대한 정보는 부족하였다. 이에 대한 평가를 위해 Back의 실험조건을 1D 등엔 트로피 관계와 이론 기반의 Analogy, 반경험식 에 적용하여 열전달 계수를 예측하였다. 또한, 상용 전산해석 프로그램을 이용하여 2D 축대칭 좌표계에서 벽면 등온 노즐의 열전달 계수를 난 류 모델에 따라 예측하였다. k-ε 2 layer, k-ω SST, SA 세 가지 난류 모델 중 k-ω SST 모델을 적용한 경우, 열전달 계수가 실험 결과와 가장 유사하였다. k-w SST의 경우, 다른 난류 모델과 비교하여 경계층의 온도를 보다 잘 예측하여 열 유속과 열전달 계수가 실제 실험결과와 잘 일치 하는 것으로 판단된다. 반경험식을 이용한 열전 달 계수 결과는 대체로 실험값에 비해 크게 예 측된 반면, 이론 기반의 analogy를 이용한 계산 에서는 Prandtl-Taylor analogy를 사용한 경우 실험결과와 잘 일치하는 것을 확인하였다. CFD 결과와 Prandtl-Taylor analogy를 사용한 결과를 비교해보면 노즐 축방향으로 평행이동한 것처럼 보이는데 이는 2D 축대칭 유동과 1D 등엔트로 피 유동의 차이와 두 해석에 적용된 물성치의 차이 등에서 기인한 것으로 생각된다. Bartz의 반경험식 대비 Prandtl-Taylor analogy를 통한 열전달 계수의 적용은 노즐 구조체 열과 유동 연계해석에 있어 보다 나은 정확도와 해석 비용 을 절감할 수 있을 것으로 기대된다.

9

후 기

본 연구는 ㈜LIG넥스원(63985-01)의 지원으로 수행되었으며, 지원에 감사드립니다.

References

- Bennett, C.O. and Myers, J.E., "Momentum, Heat, and Mass Transfer," 3rd edition, McGRAW-HILL, New York, N.Y., U.S.A, 1983.
- Colburn, A.P., "A method of correlating forced convection heat-transfer data and a comparison with fluid friction," *International Journal of Heat and Mass Transfer*, Vol. 7, No. 12, pp. 1359-1384, 1964.
- Bartz, D.R., "A simple equation for rapid estimation of rocket nozzle convective heat transfer coefficients," *Jet Propulsion*, Vol. 27, No. 1, pp. 49-51, 1957.
- Bartz, D.R., "Turbulent Boundary-Layer Heat Transfer from Rapidly Acceleration Flow of Rocket Combustion Gases and of Heated Air," *Advances in Heat Transfer*, Vol. 2, pp. 2-108, 1965.
- 5. Betti, "Flow Field and Heat Transfer Analysis of Oxygen/Methane Liquid Rocket Engine Thrust Chambers," Ph.D. Thesis, Department of Mechanical and Aerospace Engineering, Sapienza University of Rome, Rome, Italy, 2012.
- Schuff, R., Maier, M., Sindiy, O., Ulrich, C. and Fugger, S., "Integrated Modeling and Analysis for a LOX/Methane Expander Cycle Engine: Focusing on Regenerative Cooling Jacket Design," 42nd AIAA/ASME/ SAE/ASEE Joint Propulsion Conference and Exhibit, Sacramento, C.A., U.S.A., AIAA 2006-4534, Jul. 1957.
- 7. Nichols, R.H. and Nelson, C.C., "Wall

Function Boundary Conditions Including Heat Transfer and Compressibility," *AIAA Journal*, Vol. 42, No. 6, pp. 1107-1114, June 2004.

- Bensayah, K., Hadjadj, A. and Bounif, A., "Heat Transfer in Turbulent Boundary Layers of Conical and Bell Shaped Rocket Nozzles with Complex Wall Temperature, Numerical Heat Transfer," *Part A: Applications: An International Journal of Computation and Methodology*, Vol. 66, No. 3, pp. 289-314, May 2014.
- Hahm, H.C. and Kang, Y.G., "Comparative Studies of Heat Transfer Coefficients for Rocket Nozzle," *Journal of the Korean Society* of Propulsion Engineers, Vol. 16, No. 2, pp. 42-50, Apr. 2012.
- Back, L.H., Massier, P.F. and Gier, H.L, "Convective heat transfer in a convergentdivergent nozzle," *International Journal of Heat and Mass Transfer*, Vol. 7, No. 5, pp. 549-568, May 1964.
- 11. Kim, Y.G., Bae, J.C. and Kim, J.O., "Parametric comparative study of Rocket Nozzle Convective Heat Transfer Coefficient Application of Combustion gas characteristic and Method of Analysis," *48th KSPE Spring Conference*, Jeju, Korea, pp. 651-663, May 2017.
- 12. Huzel, D.K. and Huang, D.H., *Modern engineering for design of liquid-propellant rocket engines*, 1st ed, American Institute of Aeronautics and Astronautics, U.S.A., 1992.
- Pavli, A.J., Curley, J.K., Masters, P.A. and Schwartz, R.M., "Design and Cooling Performance of A Dump-Cooled Rocket Engine," NASA TN-D-3532, 1966.
- Simcenter STAR-CCM+ 2019.1, "Simcenter STAR-CCM+® Documentation Version 2019.1," Siemens, Wittelsbacherpl. 1, 80333 München, Germany, 2019.

- Kader, B.A, "Temperature and concentration profiles in fully turbulent boundary layers," *International Journal of Heat and Mass Transfer*, Vol. 24, No. 9, pp. 1541 - 1544, 1981.
- 16. Kam, H.D, Kim, J.S., "Assessment and Validation of Turbulence Models for the Optimal Computation of Supersonic Nozzle Flow," *Journal of the Korean Society of Propulsion Engineers*, Vol. 17, No. 1, pp. 18-25, 2013.