Research Paper

DOI: https://doi.org/10.6108/KSPE.2021.25.1.019

기체 에틸렌/산소 Tri-arc 회전 데토네이션 엔진 실험연구

이은성" · 한형석" · 최정열",*

An Experimental Study of Tri-arc Rotating Detonation Engine Using Gaseous Ethylene/Oxygen

Eun Sung Lee^a · Hyung-Seok Han^a · Jeong-Yeol Choi^{a,*}

^aDepartment of Aerospace Engineering, Pusan National University, Korea *Corresponding author. E-mail: aerochoi@pusan.ac.kr

ABSTRACT

In rotating detonation engine(RDE), only the detonation wave is moving around the outer wall of the combustor. Neither a mechanical part nor flow is rotating in RDE. Thus, the RDE cross section is not necessary to be circular, but arbitrary closed section is possible. A RDE of tri-arc cross section is designed and As an example of an arbitrary cross sectioned RDE, a RDE of tri-arc cross section is designed in this study, and operational and performance characteristics were examined experimentally. The rotation of the detonation wave is confirmed by dynamic pressure sensor and high-speed camera, while the characteristics of the detonation wave were investigated at the concave and convex surfaces. In the present study, the thrust level of 17.0 N to 96.0 N was obtained depending on the mass flow rate.

초 록

회전 데토네이션 엔진(Rotating Detonation Engine, RDE)은 기계 장치나 유동이 아닌 데토네이션 파만이 연소실 벽을 따라 회전한다. 따라서 RDE 단면이 원형이어야 할 필요가 없으며 임의 단면의 닫힌 형상이 가능하다. 본 연구에서는 임의의 단면을 가지는 RDE의 한 가지 예로써 tri-arc 단면 형 상의 RDE를 설계하였으며, 실험적으로 작동 및 성능 특성을 살펴보았다. 동압 센서와 고속카메라를 통하여 데토네이션 파의 회전을 확인하였으며, 오목 면과 볼록 면에서 질량 유량에 따른 데토네이션 파의 특징을 알아보았다. 본 연구에서는 유량 조건에 따라 17.0 N에서 96.0 N의 추력 수준을 얻을 수 있었다.

Key Words: Rotating Detonation Engine(RDE, 회전 데토네이션 엔진), Tri-arc RDE, Pressure Gain Combustion(압력 획득 연소), Constant Volume Combustion(정적연소), Radius of Curvature(곡률 반경)

Received 25 April 2020 / Revised 29 December 2020 / Accepted 5 January 2021 Copyright © The Korean Society of Propulsion Engineers pISSN 1226-6027 / eISSN 2288-4548

1. 서 론

데토네이션은 충격파와 충격파 후방의 발열반 응, 열질식이 결합된 연소 현상으로 기체역학적 정적연소(Constant Volume Combustion, CVC) 효과로 연소 후 압력 상승이 일어나며 높은 압 축 효과와 열효율을 수반하는 현상이다. 데토네 이션 현상을 동력 장치에 활용한 기본적인 데토 네이션 엔진으로 펄스 데토네이션 엔진(Pulse Detonation Engine, PDE)이 있다. PDE는 한쪽 끝이 막힌 긴 관에서 유체역학적으로 데토네이 션 천이(Deflagration to Detonation Transition, DDT)를 이용하여 데토네이션을 발생시킨다. 하 지만 추진기관으로써 활용하기 위해서는 100 Hz 이상의 주기적인 작동이 필요하고 이로 인한 기 계적인 문제로 인해 회전 데토네이션 엔진 (Rotating Detonation Engine, RDE)이 주목받고 있다.

RDE는 일정한 폭의 연소실 채널에서 데토네 이션 파가 원주 방향으로 전파되며, 파 후방의 고압 기연 가스에 의해 추력을 얻게 된다. RDE 는 일반적으로 원형의 단면을 가지는 연소기로 데토네이션 파가 회전할 뿐, 압축기나 터빈처럼 회전하는 기계적인 부분이 없다. 유동조차도 축 방향 또는 반경 방향으로 분사되며, 거의 회전하 지 않는다. RDE의 연소실 채널에서 회전하는 데 토네이션 파는 뾰족한 모서리에서는 회절로 인 한 데토네이션 실패가 일어나지만, 특정 곡률 반 경 이상이면 단면의 모양과 관계없이 발생하여 회전하게 되는데 다음과 같은 특징들은 연소기 의 단면이 원형일 필요가 없음을 뜻하며 원형이 아닌 단면을 가지는 RDE는 추진 시스템 설계 및 통합에 큰 유연성을 가져다줄 것으로 판단하 고 있다.

이상의 특징을 이용한 임의 단면 형상 RDE의 수치해석 결과를 Choi 등[1]이 보여주었으며, Kasahara 등[2]은 곡률 반경에 따른 데토네이션 의 전파 특성 결과를 이론 및 실험적으로 보여 주었다. 원형이 아닌 race-track 단면 형태의 RDE 연구를 Gamba 등[3], Kasahara 등[4], Wang 등[5], Liu 등[6] 등이 수행하였으며, 이외 에도 radial RDE와 helical detonation channel의 실험 연구를 Polanka 등[7], Pan 등[8]이 각각 수 행하였다.

본 연구에서는 원형이 아닌 임의의 단면을 가 지는 RDE의 한 예로써, tri-arc 형태의 RDE를 최초로 설계하여 후방 가시화 및 동압 센서를 통하여 데토네이션의 발생 및 회전 여부를 알아 보았으며, 오목 면과 볼록 면에서 데토네이션 전 파 특성을 실험적으로 알아보았다.

일반적으로 데토네이션 장치는 노즐 유무와 별개로 RDE 또는 RDC(Rotating Detonation Combustor)로 혼용되어 사용되지만 본 논문에서 는 RDE로 통칭한다. [9,10]

Fig. 1 Tri-arc RDE model.

Fig. 2 Cross section of tri-arc RDE.

실험 장치 및 방법

Fig. 1에 이번 연구에서 사용한 tri-arc RDE를 나타내었다. Tri-arc RDE는 SUS303으로 제작되 었으며 연료와 산화제는 각각 기체 에틸렌과 산 소 그리고 퍼징(Purging) 가스로는 질소를 사용 하였다. 연료와 산화제는 Fig. 2에 표시된 각 플 리넘(Plenum)에 공급된 뒤, 슬롯(Slot) 형태의 분 사구를 통해 연소실로 공급된다. 이때, 산소는 축 방향으로 분사되며, 에틸렌은 반경 방향으로 분사된다. 연소실 길이는 75 mm, 연소실 채널 폭은 4.5 mm이며, 산소와 에틸렌의 슬롯 간격은 각각 0.4 mm, 0.34 mm이다. Tri-arc RDE의 점 화기(Pre-detonator)는 이전에 연구된 결과[11]를 바탕으로 외경 6.35 mm, 내경 4.22 mm의 상용 튜브를 사용하였으며, 데토네이션 천이가 일어날 수 있는 충분한 길이인 약 150mm의 PDE를 사용

Fig. 3 Tri-arc RDE experimental setup.

Fig. 4 Geometry of cross-section(right) and pressure sensor location(left).

하였다. 시동 시 손실을 최소화하기 위하여 점화 기는 연소실 채널에 접하게 설치하였다. Fig. 4 에는 단면의 치수와 정압 센서와 동압 센서의 위치를 표시하였다.

Fig. 5는 본 연구의 전체 실험 장치의 구성 개 략도이다. 가스 공급 및 제어 시스템은 이전에 연구[12]된 원형 RDE의 실험 장치를 사용하였 다. 실험 순서는 Fig. 6과 같이 수동으로 안전밸 브를 개방 후, PLC(Keyence 社, KV-N40AT, Programmable logic controller)를 통하여 입력된 시퀀스를 통해 tri-arc RDE의 제어 밸브를 개방 하면 일정 시간 이후 점화기에 산소 및 에틸렌이

Fig. 5 Schematic of tri-arc RDE system.

Fig. 6 Tri-arc RDE sequence.

공급되며 점화가 일어난다. 작동이 종료되면 퍼 징이 이루어지며 안전밸브를 닫으며 실험이 종 료된다.

연소 실험 진행 전 tri-arc RDE 모델과 각 밸 브 등 실험 장치와의 관계를 알아보았다. 질량 유량은 짧은 작동 시간을 고려하여 3.4 L의 가스 통을 이용하여 연료와 산화제 각각을 정해진 시 간 동안 방출시킨 뒤 실험 전후의 무게 차를 정 밀 전자저울(A&D 社, Weighing GP-20K)로 측 정하는 방법으로 도출하였다. 측정된 질량 유량 을 식(1)을 이용하여 이론값과 비교하였다.

$$\dot{m} = \frac{A_t p}{\sqrt{T}} \sqrt{\frac{\gamma}{R} \left(\frac{2}{\gamma+1}\right)^{(\gamma+1)/(\gamma-1)}} \tag{1}$$

비교한 결과를 Fig. 7과 Table 1에 나타내었 다. 결과는 실험이 진행될 질량 유량 범위인 약 30 ~150 g/s 범위에서 이루어졌으며, Table 1과 같이 각 플리넘 압력이 0.1 MPa~1 MPa일 때, 산소는 이론값과 1.06 g/s~1.67 g/s의 차이를

Fig. 7 Relation between pressure and mass flow rate.

Table 1. Difference between experimental data and calculated mass flow rate.

	Width	Area	Difference	Percentage
	(mm)	(mm ²)	(g/s)	error(%)
Oxygen	0.40	63.42	$1.06 \sim 1.67$	6.8~1.1
Ethylene	0.34	46.85	1.92~2.63	$18\!\sim\!2.5$

보였으며, 에틸렌의 경우 1.92 g/s~2.63 g/s의 차이를 보였다. 이론값과 실험값의 차이가 발생 하는 원인으로는 축 방향과 반경 방향으로 공급 되는 산소와 에틸렌이 슬롯 형태의 분사구를 가 짐에 따라 분사구의 단면적이 변하기 때문이라 고 판단된다.

Fig. 8에는 연소 실험 중 측정된 각 정압 센서 의 시간에 따른 압력 결과를 구간별로 도시하였 고, Table 2에 각 구간의 의미를 나타내었다. (1) 의 경우 PLC를 통해 제어 밸브에 개방 신호를 보낸 후, 각 플리넘에서의 압력이 상승이 일어나 기까지 걸리는 시간을 의미하며 약 0.125 s 정도 가 소요된다. (2) 번 구간 및 (3) 번 구간의 경우 설계된 플리넘의 부피에 대하여 공급압력에 따 라 변하게 되며 소요되는 시간은 약 0.5 s 이내 이다. 제어 밸브의 닫히는 시간 및 플리넘에서의

Fig. 8 Pressure history.

Table 2. Operating sequence.

(1)	Control valve open and delay section							
	due to response speed							
(2)	Plenum pressure rise section							
(3)	Plenum pressure equilibrium reaching							
	Section							
(4)	Igniter gas supply and ignition section							
	Operating section and control valve							
(5)	pressure drop section							
(6)	Plenum pressure drop section and							
	purging section							

압력 하강 지연시간은 약 0.3 s 이내로 나타났으 며, 따라서 tri-arc RDE의 총 작동 시간은 0.4 s 이내로 진행하였다.

3. 실험 결과

3.1 실험 유량 조건

Table 3에 질량 유량 조건에 따른 실험 결과 및 특징들을 정리하여 나타내었다. 실험을 진행 한 질량 유량 조건 구간 중에서 상대적으로 저 유량 조건이거나 고유량 조건일 경우에는 데토 네이션 파의 개수나 회전 방향이 일정하지 않은 불안정한 구간이 나타났다.

3.2 기준 유량 조건

고속카메라로 tri-arc RDE의 후방 촬영한 결과 의 흑백 반전 스냅샷을 Fig. 10에 나타내었다. 촬영 조건은 256x256 resolution, 200,000 fps이 며, 시계 방향으로 39.96 ms 시점부터 0.02 ms 간격으로 나열하였다.

촬영을 통하여 2 개의 데토네이션 파가 시계 방향으로 회전하고 있음을 확인할 수 있었고, 초 당 프레임 수와 연소실 채널의 바깥 둘레 길이 를 고려하였을 때, 하나의 데토네이션 파의 속도 는 약 1,485 m/s이다.

Fig. 11과 Fig. 12에 각각 채널 2시 방향의 오 목 면과 4시 방향 볼록 면의 점화 직후 동압 측 정 결과를 나타내었다. 실험 조건은 질량 유량

80.06 g/s, 당량비 1.04이다. 각 면의 동압 결과 의 차이점은 점화 시 나타나는 PDE에 의한 임 펄스 값이 점화기에 상대적으로 가까운 오목 면 에서 더 크게 나타났으며, 또한 점화 이후 데토 네이션 파가 곧바로 회전하는 것이 아니라 0.4 ms~0.5 ms 정도 지연되어 전파되었다.

Fig. 13과 Fig. 14에는 안정한 데토네이션 파

Fig. 9 Tri-arc RDE combustion test.

Fig. 10 Snapshots of tri-arc RDE combustion test.

m (g	đ	Dominant	Footuro	
Oxygen	Ethylene	Ψ	frequency(kHz)	reature
42.79 ± 0.27	12.38 ± 0.21	0.99	16.117	Unstable
49.81 ± 0.11	$14.92 ~\pm~ 0.07$	1.02	16.680	Stable
58.37 ± 0.38	22.24 ± 0.45	1.04	16.718	Stable
77.41 ± 0.01	$23.15 ~\pm~ 0.11$	1.02	17.638	Stable
87.51 ± 0.61	$26.34 ~\pm~ 0.01$	1.03	17.481	Stable
97.70 ± 0.42	28.98 ± 0.58	1.01	17.815	Stable
109.14 ± 0.73	32.13 ± 0.50	1.01	17.567	Unstable

Table 3. Overview of experiment conditions.

가 회전하는 구간의 동압 결과를 나타내었으며, 전체적인 압력 값이 오목 면에서 더 크게 나타 났다. 일반적인 원형 RDE에서는 안쪽 면보다 둘 레가 긴 바깥쪽 면에서 속도가 증가하며, 압력이 높게 나타난다. 이는 회전하는 데토네이션 파의 관점에서 안쪽 면의 면적은 넓어지는 형태로 팽 창하게 되고, 바깥쪽 면은 상대적으로 좁아지며 압축 효과가 나타나는 것으로 볼 수 있다. Tri-arc RDE 채널 내부의 시계 방향으로 회전하 는 데토네이션 파의 경우, 센서가 설치된 바깥쪽 면의 압력이 볼록 면을 지나 오목 면을 통과하 며 감소하고, 다시 볼록 면을 지나며 증가함에 따라 오목 면 보다 볼록 면에서의 압력이 더 높 을 것으로 예상하였으나, 동압 결과는 이와 반대 로 오목 면에서 더 높게 나타났다. 이러한 결과

Fig. 11 Dynamic pressure record of concave corner.

Fig. 13 Dynamic pressure record of concave corner.

는 다음과 같이 볼록 면과 오목 면에서 연료 공 급이 균일하지 않아 나타나는 유량과 혼합비의 차이로 판단된다. 즉, 에틸렌은 채널 안쪽 면의 슬롯형 분사구에서 질식(Choking)되어 반경 방 향으로 공급되는데, 분사기 두께와 형상의 영향 으로 볼록 면에서는 상대적으로 저속의 낮은 혼 합 기체가 형성되고, 오목 면에서는 고속의 높은 혼합 조건이 형성되는 결과로 추정된다. 다음과 같은 결과를 뒷받침하기 위해 고속카메라 촬영 결과의 영상 처리 및 추가 적인 동압 센서를 설 치한 후, 비교 분석이 필요하다고 판단된다.

각 면에 따른 FFT(Fast Fourier Transform) 결 과를 Fig. 15와 Fig. 16에 나타내었다. 결과를 비 교해보면, 각 과압(Overpressure)들의 진폭값은 볼록 면보다 오목 면에서 크게 나타났으며, 주파

Fig. 12 Dynamic pressure record of convex corner.

Fig. 14 Dynamic pressure record of convex corner.

수는 큰 차이를 보이지 않았다. 획득한 FFT 결 과를 통해 계산한 데토네이션 속도는 두 면에서 모두 약 1,551 m/s로 나타났다. 도출한 속도 결 과를 동일한 조건의 NASA CEA 코드[13]의 CI(Chapman-Jouguet) 이론을 통하여 구한 속도 결과와 비교하였으며, 두 결과는 약 846 m/s의 차이를 보였다. 이러한 속도 결손(Deficit)은 CJ 이론은 데토네이션 속도를 열량 함수로 계산하 게 되는데, 연소 실험 과정에서 연료가 완전 연 소 되지 않아 발생한 열 손실에 의한 가능성을 염두에 두고 있다[14]. 또 다른 이유로는 tri-arc RDE 채널에서 회전하는 데토네이션 파는 연소 실 채널에 대해 항상 수직이지 않기 때문에 CI 이론과 차이를 보이는 것으로 판단하고 있다. FFT를 통해 구한 속도값은 고속카메라 결과와는 66 m/s의 차이를 보인다.

3.3 저유량 조건 및 고유량 조건

현재까지 실험을 진행한 질량 유량 조건 범위 에서 상대적으로 낮은 질량 유량 조건인 55.17 g/s와 상대적으로 높은 질량 유량 조건인 141.27 g/s의 STFT(Short Time Fourier Transform) 결 과와 고속카메라 결과를 각각 Fig. 17, Fig. 18 및 Fig. 19, Fig. 20에 나타내었다. 질량 유량 55.17 g/s, 당량비 0.99 조건에서의 촬영은 384x384 resolution, 80,000 fps로 진행되었으며, 16.615 ms부터 0.05 ms 간격으로 왼쪽 위부터 시계 방향으로 나열하였다. 질량 유량 141.27 g/s, 당량비 1.01 에서의 촬영 조건은 256x256 resolution, 200,000 fps이며, 165.760 ms부터 0.02 ms 간격으로 왼쪽 위부터 시계 방향으로 나열하 였다.

상대적으로 낮은 질량 유량 조건에서는 점화 직후, 약 28 ms까지 데토네이션 파의 회전 방향 이 일정하지 않고 파의 개수가 계속하여 변하는 불안정한 현상이 나타났다. 이후에는 2 개의 데 토네이션 파가 반시계방향으로 안정하게 회전하 는 것을 확인할 수 있었다. 반면에 상대적으로 높은 질량 유량 조건에서는 2 개의 데토네이션 파가 시계 방향으로 안정하게 회전하다가 165~ 175 ms 구간에서 파가 3 개로 증가하는 불안정 한 현상이 나타났다. 하지만 특정한 구간을 제외 하면 2 개의 데토네이션 파가 안정하게 회전하 였다. 이러한 현상은 연소실 채널의 단면 면적에 따라 데토네이션 파가 안정하게 회전하는 질량 유량 구간이 있다고 판단된다.

3.4 Summary

Fig. 21에는 질량 유량 조건에 따른 오목 면과 볼록 면의 FFT 결과에서 진폭값이 가장 큰 과압 의 진폭값들을 비교하였다. 점화 직후부터 데토 네이션 파의 불안정한 회전 현상이 나타났던 55.17 g/s의 질량 유량 조건을 제외하면, 오목 면이 볼록 면과 비교하여 항상 큰 진폭값을 가졌

Fig. 16 FFT result of convex corner.

Fig. 17 Unstable detonation behavior at low mass flow rate, m = 55.17 g/s, $\Phi = 0.99$.

다. 하지만 질량 유량 증가에 따른 진폭값의 증 가분이나 각 면 간의 편차는 일정하지 않았다.

로드셀에 의해 측정된 추력은 축 방향으로 분 사되는 산소에 의한 추력과 데토네이션 파에 의 한 추력으로 나눌 수 있으며, 점화 이후 작동 시 간 동안 데토네이션 파에 의해 발생한 추력의 평균값과 제어 밸브 개방 이후부터 점화 이전까 지 산소 분사에 의한 추력의 평균값의 차이로 도출하였다. 산소에 의한 추력은 질량 유량에 따 라 약 2.0 N에서 13.0 N으로 나타났으며, Fig. 22에는 질량 유량에 따른 데토네이션 파에 의한

Fig. 19 Unstable detonation behavior at high mass flow rate, m = 141.27 g/s, $\Phi = 1.01$.

Fig. 20 STFT result at high mass flow rate, $\dot{m}=141.27\,g/s, \Phi=1.01.$

추력을 나타내었다. 추력 결과는 질량 유량이 증 가함에 따라 추력이 증가하는 경향을 보이며, 현 재까지의 실험 조건에서 17.0 N에서 96.0N의 추 력 수준을 얻을 수 있었다.

4. 결 론

데토네이션 파가 특정 곡률 반경 이상에서는 단면의 모양과 관계없이 발생하여 유지되는 특 성을 이용하여 tri-arc 형태의 단면을 가지는

Fig. 21 FFT amplitude compared by each corner.

Fig. 22 Thrust results of tri-arc RDE.

RDE를 설계 및 제작하였다. 실험적으로 데토네 이션 파가 발생하여 회전하는 것을 확인하였다. 단면의 형태에 따른 전파 특성을 알아보기 위해 오목 면과 볼록 면 각각에 동압 센서를 설치하 여 압력 결과를 FFT와 STFT를 통하여 분석하였 으며, 이를 고속카메라 촬영 결과와 비교하였다. 질량 유량 80.06 g/s, 당량비 1.04의 조건에서의 동압 결과는 볼록 면보다 오목 면에서 더 크게 나타났다. 데토네이션 속도는 1,551 m/s로 도출 되었으며, 이는 데토네이션 파의 속도 결손으로 인해 CJ 이론을 통한 계산값과 846 m/s의 차이 를 보였다. 고속카메라 촬영을 통해 구한 속도는 1485 m/s로 동압 결과와 비슷하게 나타났다. 실 험을 진행한 질량 유량 조건 구간에서 상대적으 로 낮은 질량 유량 조건과 상대적으로 높은 질 량 유량 조건에서는 데토네이션 파가 불안정하 게 회전하는 구간이 나타났으며, 이는 연소실 채 널의 단면 면적과 관련이 있다고 판단된다. 질량 유량 조건에 따른 각 면에서의 FFT 진폭값을 비 교하였으며, 질량 유량 증가에 따른 진폭값의 증 가는 일정하지 않았다. 현재까지의 질량 유량 조 건에서 데토네이션 파에 의한 추력은 17.0 N에 서 96.0 N을 얻었으며, 추력 결과 및 데토네이션 의 전과 과정은 추후 원형 RDE와 비교 분석이 필요할 것으로 판단된다. 또한 각 면에서의 동압 결과를 비교하기 위해 고속카메라 촬영 결과의 영상 처리가 필요할 것으로 판단된다.

후 기

본 논문은 정부(과학기술정보통신부)의 재원으 로 한국연구재단 중견연구자지원사업 (NRF-2019 R1A2C1004505) 및 한국연구재단 우주핵심기술 개발사업 (NRF-2018M1A3A3A02065563)의 지원 으로 작성되었습니다.

References

- Kim, T.Y. and Choi, J.-Y., "Numerical Study of Detonation Wave Propagation in 2-D Channels of Arbitrary Radius of Curvature," 50th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, Cleveland, OH, U.S.A., AIAA 2014-3903, Jul. 2014.
- Nakayama, H., Moriya, T., Kasahara, J., Matsuo, A., Sasamoto, Y. and Funaki, I., "Stable detonation wave propagation in rectangular-cross-section curved channels, "*Combustion and Flame*, Vol. 159, Issue 2, pp. 859-869, 2012.
- Chacon, F. and Gamba, M., "Study of Parasitic Combustion in an Optically Accessible Continuous Wave Rotating Detonation Engine," *AIAA Scitech* 2019 *Forum*, San Diego, CA, U.S.A., AIAA

2019-0473, Jan. 2019.

- Gawahara, K., Nakayama, H., Kasahara J., Matsuoka, K., Tomioka, S., Hiraiwa, T., Matsuo, A. and Funaki, I., "Detonation engine development for reaction control systems of a spacecraft," 49th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, SanJose, CA, U.S.A., AIAA 2013-3721, Jul. 2013.
- Η., 5. Wen, Xie, Q. and Wang, B., "Propagation behaviors of rotating detonation in an obround combustor," Combustion and Flame, Vol. 210, pp. 389-398, 2019.
- Peng, H., Liu, W. and Liu, S., "Ethylene Continuous Rotating Detonation in optically accessible racetrack-like combustor," *Combustion Science and Technology*, Vol. 191, Issue 4, pp. 676-695, 2018.
- Boller, S.A. and Polanka, M.D., "Experimental Flow Visualization in a Radial Rotating Detonation Engine," *AIAA Scitech 2019 Forum*, San Diego, CA, U.S.A., AIAA 2019-1253, Jan. 2019.
- Pan, Z., Chen, K., Qi, J., Zhang, P., Zhu, Y., Pan, J. and Gui, M., "The propagation characteristics of curved detonation wave: Experiments in helical channels," *Proceedings of the Combustion Institute*, Vol. 37, Issue 3, pp. 3585-3592, 2019.
- Kim, J.M., Niyasdeen, M., Han, H.S., Oh, S.J. and Choi, J.Y., "Research Activities on PGC Propulsion based on RDE, Part I:

Basic Studies," *Journal of the Korean Society of Propulsion Engineers*, Vol. 25, No. 5, pp. 97-107, 2017.

- Kim, J.M., Niyasdeen, M., Han, H.S., Oh, S.J. and Choi, J.Y., "Research Activities on PGC Propulsion based on RDE, Part II: Application Studies," *Journal of the Korean Society of Propulsion Engineers*, Vol. 21, No. 6, pp. 91-102, 2017.
- Han, H.S., Kim, J.M., Oh, S.J. and Choi, J.Y., "An Experimental Study on Characteristics of Small-scale PDE under Low-frequency Operating Conditions," *Journal of the Korean Society of Propulsion Engineers*, Vol. 22, No. 3, pp. 81-89, 2018.
- Han, H.S. and Choi, J.Y., "Operational Characteristics of a Rocket-type RDE using C₂H₄/GO₂, "AIAA Propulsion and Energy 2019 Forum, Indianapolis, IN, AIAA 2019-4297, Aug. 2019.
- Gordon, S. and McBride, B.J., "Computer Program for Calculation of Complex Chemical Equilibrium Compositions and Applications," NASA, Cleveland, OH, U.S.A., NASA RP-1311, 1994.
- Fujii, J., Kumazawa, Y., Matsuo, A., Nakagami, S., Matsuoka, K. and Kasahara, J., "Numerical investigation on detonation velocity in rotating detonation engine chamber," *Proceedings of the Combustion Institute*, Vol 36, Issue 2, pp. 2665-2672, 2017.