Research Paper

DOI: https://doi.org/10.6108/KSPE.2020.24.3.041

고에너지 열가소성 추진제 제조 및 특성연구(II)

김한철^a · 박의용^a · 정재윤^a · 김윤곤^{a,*} · 최성한^a · 강태운^b · 오경원^c

Study on the Formulation of an Energetic Thermoplastic Propellant and its Properties(II)

Han-cheol Kim^a · Eui-Yong Park^a · Jea-Yun Jeong^a · Yoon-Gon Kim^{a,*} ·

Sung-han Choi^a · Tae-won Kang^b · Kyeong-won Oh^c

^a Propulsion Center, Daejeon Plant, Hanwha Corporation, Korea ^b Energetic Materials & Pyrotechnics, hanwha Corporation R&D Center, Korea ^c Maneuver&Firepower Technical Team, Defense Industry Technology Center, Korea

*Corresponding author. E-mail: ygkim@hanwha.com

ABSTRACT

In this study, measurement and analysis results from Differential scanning calorimetry(DSC) and Thermogravimetric analysis(TGA) on the newly developed high-energy thermoplastic elastomer(ETPE) propellant are described, followed by the previous study done under the same title as this paper [1]. The characteristics of high-energy thermoplastic propellant were also verified by conducting thermal analysis, and the LSGT, Shotgun & RQ Bomb test, was carried out as well. High energetic thermoplastic binders containing 45% of GAP(Glycidyl Azide Polymer), energetic plasticizer(DEGDN) and Oxidizer Aonium Perchlorate), RDX(reseach development explosive, cyclotrimethylenetrinitramine) were used to formulate the propellant.

초 록

본 연구에서는 당 논문과 동일한 제목 하에 이루어진 연구결과에 이어서 최신 개발 고에너지 열가 소성(ETPE)추진제의 시차 주사 열량(DSC) 및 열중량 분석(TGA)법으로 열분석을 진행하여 고에너지 열가소성 추진제의 특징을 확인하였으며, 추진제 둔감성을 확인하기 위해 추진제 둔감 정도 확인 시험 인 LSGT, 파쇄성 시험을 진행하였다. 추진제 원료로는 GAP(Glycidyl Azide Polymer)이 45% 함유된 고에너지 열가소성(ETPE) 바인더와 고에너지 가소제(DEGDN), 산화제로는 AP(Ammonium Perchlorate)와 RDX(research development explosive, cyclotrimethylenetrinitramine)를 사용하였다. 위 와 같은 분석을 통해, 개발된 ETPE 추진제가 일반적인 RDX/AP 추진제와 유사한 열적 거동을 갖는 것을 확인 하였다.

Key Words: Energetic Thermoplastic Elastomer(고에너지 열가소성 바인더, ETPE), GAP(Glycidyl Azide Polymer), Differential Scanning Calorimetry(시차 주사 열량법, DSC), Thermogravimetric Analysis(열중량 분석법, TGA), Large Scale Gap Test(LSGT)

Received 3 December 2019 / Revised 13 April 2020 / Accepted 16 April 2020 Copyright [©] The Korean Society of Propulsion Engineers pISSN 1226-6027 / eISSN 2288-4548 [이 논문은 한국추진공학회 2019년도 추계학술대회(2019. 11. 27-29, 해유대 그랜드호텔) 발표논문을 심사하여 수정·보완한 것임.]

1. 서 론

일반적인 고체 추진기관의 경우 HTPB 계열의 추진제를 많이 사용하고 있다. HTPB계열 추진 제의 경우 열경화성의 특성상 열이 가해지며 경 화가 이루어진 뒤 형상이 쉽게 변하지 않고 폐 기를 위한 처리공정이 어려우며 환경적인 문제 를 발생시키고 있다[2]. 과거에는 야외에서 소각 혹은 waterjet을 이용한 추진제 제거 방법이 있 었으나 친환경적이지 않고 제조 효율성이 좋지 않다. 이러한 환경이나 효율성 문제를 극복할 수 있는 추진제의 개발이 필요하게 된바[3], 그 대 표적인 사례로 관심을 받게 된 것이 고에너지 열가소성 바인더(Energetic Thermoplastic Elastomer, ETPE)를 이용한 추진제이다. ETPE 추진제의 경우 추진제 성형 후에도 열가소성의 특성으로 재사용할 수 있는 장점을 가지고 있어 열경화성 추진제에 비하여 친환경적이다[3,4]. 또 한, ETPE binder의 주된 성분인 GAP(Glycidyl Azide Polymer)은 -N3기를 함유하고 있어 추 진제의 성능을 높여준다[5]. 이러한 장점들로 인 해 열가소성 추진제의 연구는 계속해서 진행중 에 있다[6]. 고에너지 열가소성 추진제의 조성은 기본적으로 산화제(RDX, AP), ETPE binder 및 기타 첨가제로 구성되며[8] 추진제의 특성 확인 을 위해 물성, 연소속도, 민감도, 둔감특성 등의 평가가 수행되고 있다[5-7].

HTPB계열 고체 추진제의 경우 추진제의 물성 및 민감도 특성 등에 대한 다양한 분석이 진행 되어 있으며 둔감특성에 대해서도 많은 연구가 수행된바 있다[8-10].

하지만, 고에너지 열가소성 추진제(ETPE)의 경우 상대적으로 둔감시험 및 열분석에 관한 연 구가 활발히 이루어지지 않고 있다. 본 연구에서 는 고에너지 열가소성 바인더를 기반으로 하는 추진제의 특성을 확인하기 위하여 시차 주사 열 량(DSC) 및 열중량(TGA)분석, 추진제 둔감성 시 험인 UN test Series 7의 일부인 "7(c)(ii)"의 Shotgun & RQ Bomb(파쇄성 시험)을 수행하 였다.

2. 추진제 조성설계 및 특성실험

2.1 친환경 열가소성 추진제 조성 설계

추진제의 원료로는 GAP이 45% 함유된 고에 너지 열가소성 바인더와 고에너지 가소제인 DEGDN을 사용하였으며, 산화제의 경우 RDX와 AP를 적정 비율로 혼합하여 제조하였다. 또한 첨가제로는 bismuth subsalicylate를 사용하였으 며 요구 특성에 따라 수종의 첨가제를 적용하였 다. 설계된 조성은 Table 1에 간략히 나타내었다.

2.2 DSC analysis(Differential scanning

calorimetry)

DSC 측정의 경우 TA instruments(USA)사의 Q20 기기로 분당 10℃로 승온하여 측정 하였고, Table 1의 조성을 기반으로 하여 혼화, 압출, 압 축공정을 거쳐 성형하였으며 제조된 추진제는 시차 주사 열량분석법(DSC)을 이용하여 열특성 을 분석하였다.

DSC의 경우 발열 혹은 흡열로 인해 시료와 기준물질 간의 온도 차이가 발생했을 때 열전쌍 감지기에 의해 양쪽의 온도차이를 감지하게 되 며 이 온도 차이가 열량의 차이로 환산되어 데 이터를 얻게 된다. ETPE 추진제의 경우 195℃에 발열반응이 시작되며 229℃때 흡열 반응이 진행 되는 것으로 확인되었다. 알려진 바에 의하면 AP의 경우 1차분해와 2차분해로 나뉘어 지는데 1차분해의 경우 대략 200~300℃ 부근에서 일어 나며 2차분해는 300~400℃에서 발생한다[11]. 따라서 DSC curve에 나타난 195℃에서 AP의 1 차 분해가 일어나는 것을 유추할 수 있다. 또한 AP는 240℃부근에서 crystal transformation이 일어나며 이는 246℃에서 일어나는 것으로 보이

Table	1.	Propellant	composition.

propellant raw material	wt%
ETPE	≥19
DEGDN	≥ 5
RDX+AP	≥ 74
bis-sub, etc.	≥2

고 이때 흡열반응이 진행되는 것을 알 수 있었 다[12]. 195℃부터 245℃사이에 두 번의 heat flow가 보이는데, 이는 앞서 말한 AP의 1차분해 가 일어남과 동시에 Exothermic RDX의 decomposition이 일어나는 것을 나타낸다[13]. RDX/AP와 비교하면 RDX/AP의 경우 201℃에 서 잠깐의 흡열반응이 일어나면서 205℃까지 발 열반응이 일어난다. ETPE 추진제와 비교했을 때 약간 높은 온도에서 발열반응이 진행되는 것으 로 보인다. RDX/AP의 두 번째 흡열반응의 온도 는 243℃로 측정되며 이는 앞서 말한 AP의 crystal transformation으로 기인된다[14]. 전반적 으로 ETPE 추진제의 RDX/AP와 일반 RDX/AP 의 경우 전반적으로 DSC heat flow의 온도 범 위는 유사하나 다소 차이가 있는 점은 바인더의 화학적, 물리적 결합에 의해 생겨나는 것으로 보 여진다.

2.3 TGA analysis(Thermogravimetric analysis)

열중량 분석의 경우 TA instruments(USA)사 의 Q500 기기로 분당 10℃로 승온하여 열에 따 라 분해되는 온도를 측정하였다. ETPE 추진제 1 mg을 가지고 TGA 분석을 진행하였다. 승온을 하는 과정에서 210℃에서 ETPE 추진제의 열분 해로 1차 질량 감소를 확인하였으며 이후 321℃ 에서 2차 질량 감소를 확인하였다. 이는 AP 산 화제의 1차 분해와 2차 분해특성으로 판단된다. AP분해의 경우 일반적으로 다음과 같은 반응식 으로 표시할 수 있다[14].

$$AP = NH_3 + HClO_4$$
(1)

$$AP = NH_3 + OH + ClO_3$$

$$AP = 2H_2O + NO_2 + Cl$$

$$AP = H_2O + HCl + HNO + O$$

또한, 300℃이하의 경우는 (2)의 반응식으로,

$$4NH_4ClO_4 = 2Cl_2 + 2N_2O + 3O_2 + 8H_2O \quad (2)$$

380℃ 이상에서는 (3)의 반응식으로 표현될 수 있다[15].

$$2NH_4ClO_4 = Cl_2 + 2NO + O_2 + 4H_2O$$
(3)

2.4 Shotgun & RQ bomb test

파쇄성 시험은 UN Test Series 7c(ii)에 규정된 시험으로 직경이 18 mm, 무게는 9 g인 원통형 시편을 두께 20 mm의 강철판에 탄속 150 m/s 근방으로 조절하여 충돌 시킨 후 변형된 추진제 를 모아 closed bomb에서 연소시켜 dP/dt를 측 정하는 시험이다[16].

파쇄성 시험의 경우 Table 2에 나타낸 것과 같이 총 14회를 진행하였다.

Fig. 4의 경우는 탄속 150 m/s로 하여 회수된 추진제 시편을 Closed Bomb에서 연소시켜 최대 압력 상승률(Max.dP/dt)를 탄속별로 나타내었 다. 이 결과를 토대로 150 m/s에서 dP/dt가 기 준값인 15 MPa/ms 보다 작은 값을 나타냄을 알 수 있다. 2.5 LSGT(Large scale gap test)

LSGT는 Fig. 5에 보이는 것과 같이 비전기식 뇌관과 기폭용 펜톨라이트 2개를 사용하였다. Gap은 PMMA를 가공하여 사용하였으며 witness plate의 경우 mild steel(200 mm x 200 mm x 20 mm)을 사용하였다.

이 추진제의 둔감성을 확인하기 위해 미해군 연구소 NOL(Naval Ordnance Laboratory)에서 연구한 Large Scale GAP Test(LSGT)를 진행 하 였으며 이 시험의 경우 폭광성 시험(Detonability Test)의 일종으로 보통 1.1급수와 1.3급수를 구분 하는 방법이다. 또한, 1.3등급 이하를 받아야만 둔감하다고 판단 할 수 있으며, 1.3급수의 경우 PMMA 카드(t=0.254 mm)를 기준으로 하여 69 장 이하가 관통되어야 한다.

Large Scale GAP Test(LSGT)의 결과는 Fig. 6 과 같다. 총 12번의 시험을 진행하였으며 PMMA 양을 조절해가며 GAP의 수를 측정하였다.

Fig. 3 Shotgun & RQ bomb test.

Fig. 4 Result of shotgun & RQ bomb test.

No	recycle (%)	Gun velocity (m/s)	Friability (psi/s)	Friability (MPa/ms)
1	100	149.5	293,593	2.02
2	95.5	150.6	249,219	1.72
3	97.3	152.4	341,857	2.36
4	99.9	148.8	432,543	2.98
5	98.2	149.3	453,147	3.12
6	99.9	150.9	410,528	2.83
7	100	149.7	317,203	2.19
8	99.2	151.1	363,760	2.51
9	100	151.7	499,746	3.45
10	98.1	146.9	388,513	2.68
11	99.9	153.9	341,406	2.35
12	98.9	146.7	275,455	1.90
13	99.9	154.7	321,352	2.22
14	100	153.4	409,117	2.82

Table 2. Result of shotgun & RQ bomb test.

Fig. 5 LSGT sample.

Fig. 6 Result of LSGT.

Witness plate 가운데에 눌린 모양이 생겼을 시 양성으로 판정하였으며 아예 뚫린 경우에는 음 성(-)으로 판정하였다. 그 결과 ETPE 추진제의 경우 Card Gap이 약 87.5장인 결과가 도출되었 다. 이는 NOL 기준에 의하면 1.1급수로 판단할 수 있다.

3.결 론

ETPE binder를 사용하여 친환경 열가소성 추 진제를 제조 후, 추진제의 열적 특성을 분석하였 으며 추진제의 둔감도도 확인하였다. 시차 주사 열량분석(DSC)를 이용하여 AP의 특징을 확인 할 수 있었고, 약 190℃에서부터 추진제의 열적 반응이 진행되는 것을 확인하였으며, 향후에 EIDS 완속가열 시험에 이용될 수 있는 아주 중 요한 데이터라고 보여진다. 열중량 분석(TGA)을 이용하여 추진제에 열이 가해졌을 때 분해 온도 를 확인 할 수 있었으며 이는 산화제의 분해 온 도로 예상할 수 있다. 다음으로 ETPE 추진제를 사용하여 UN Test Series 7에 있는 Extremely Insensitive Detonable Substances(EIDS) 시험방 법의 일부를 적용함으로써 추진제의 둔감성을 확인하였다. 첫 번째로 파쇄성 시험을 진행하여 합격 기준치인 탄속 150 m/s, 기준 압력 상승률 15 MPa/ms 이하에 해당하는 결과를 얻었다. 하 지만, 두 번째 시험인 LSGT의 경우 Card Gap이 87.5장인 결과가 도출되어 1.1급수에 해당하는 결과를 획득하였다. 향후 EIDS 완속가열시험을 진행하여 ETPE 추진제의 둔감성을 확인할 필요 가 있다.

후 기

본 연구를 위해 지원해주신 방위산업기술지원 센터 기동화력기술팀과 국방과학연구소 4본부 1 부 및 3부 분들께 감사의 말씀을 드립니다(계약 번호: UC160010D).

References

- Jeong, J.Y., Song, J.K., Kim, Y.G. and Lee, B.G., "Study on the Formulation of an Energetic Thermoplastic Propellant and its Properties(I)," *Journal of the Korean Society of Propulsion Engineers*, Vol. 23, No. 1, pp. 71-78, 2019.
- Zhang, Z., Wang, G. Luo, N., Huang, M. Jin, M. and Luo, Y., "Thermal Decomposition of Energetic Thermoplastic Elastomers of Poly(Glycidyl Nitrate)," *Appl. Polym.*, Vol. 131, Issue 21, pp. 40965, 2014.
- Kwon, O.S., Ji, D.J. and Choi, S.H., "Foreign State and Domestic Development of Solid Rocket Motor Demilitarization," 30th KSPE Spring Conference, Incheon, pp. 31-35, May 2008.
- Kim, H.C., "Synthetic Study of Various GAP-Copolymers for Energetic Thermoplastic Elastomer," Master's Degree, Department of Bionanotechnology, Graduate School of Hanyang University, South Korea, 2018.
- Lee, Y.G., Cho, J.H., Lee, H.J. and Lee, D.Y., "Sensitivity Characteristics of Thermoplastic Solid Propellant Using High Energy Binder and RDX/AP," 30th KSPE

Spring Conference, JeJu, pp. 853-857, 2015.

- Min, H.S., Cho, J.H., Lee, Y.H., Lee, D.Y. and Lee, H.J., "Mechanical Properties of Thermoplastic Solid Propellant Using Energetic Binder and RDX," 30th KSPE Spring Conference, JeJu, pp. 861-864, 2015.
- Cho, J.H., Lee, Y.G., Lee, D.Y., and Lee, H.J., "A Study on Burning Rate of the Thermoplastic Solid Propellants for Variant Binder," 30th KSPE Spring Conference, JeJu, pp. 865-868, 2015.
- Kim, C.K., Yoo, J.C. and Min, B.S., "Impact Sensitivity of HTPB & HTPB Propellants Using Friability Test," *Journal of the Korean Society of Propulsion Engineers*, Vol. 15, No. 1, pp. 29-34, 2011.
- Yoo, J.C., Kim, J.H., Kim, C.K. and Seo, T.S., "Thermal Characterization for HTPB IM Propellants," 33th KSPE Spring Conference, Gyeongju, pp. 177-180, 2009.
- Lee, W.J., Kim, Y.H., Lee, K.B., Koo, K.K. and Lim, H.Y., "Energetic Material Reduced Sensitivity RDX," 48th KSPE Spring Conference, Jeju, pp. 482-488, 2017.
- 11. Keenan, A. and Siegmung, R., "The Thermal Decomposition of Ammonium Perchlorate: A

Literature Review," AD 673 542, 1 August, 1968.

- Bircumshaw, L.L. and Newman, B.H., "The Thermal Decomposition of Ammonium Perchlorate I. Introduction, Experimental, Analysis of Gaseous Products, and Thermal Decomposition Experiments," *Proceedings the Royal of Society*, Vol. 227, pp. 115-132, 1954.
- Mathew, S., Krishnan, K. and Ninan, K.N., "A DSC Study on the Effect of RDX and HMX on the Thermal Decomposition of Phase Stabilized Ammonium Nitrate," *Propellants, Explosives, Pyrotechnics*, Vol. 23, pp. 150-154, 1998.
- Jiao, Q.J., Zhu, Y.L., Xing, J.C., Ren, H. and Huang, H., "Thermal Decomposition of RDX/AP by TG-DSC-MS-FTIR," *Journal of Thermal Analysis and Calorimetry*, Vol. 116, pp. 1125-1131, 2014.
- Mallick, L., Kumar, S. and Chowdhury, A., "Thermal Decomposition of Ammonium Perchlorate - A TGA-FTIR-MS Study : Part I," Vol. 610, pp. 57-68, 2015.
- Boldyrev, V.V., "Thermal Decomposition of Ammonium Perchlorate," *Thermochimica Acta*, Vol. 443, No. 1, pp. 1-36, 2006.