

Research Paper

DOI: http://dx.doi.org/10.6108/KSPE.2019.23.5.036

탄소섬유용 리오셀 전구체의 결정구조에 관한 연구

박길영^a · 김우성^a · 이수오^b · 황태경^c · 김연철^c · 서상규^c · 정용식^{b,*}

Study of the Crystal Structure of a Lyocell Precursor for Carbon Fibers

Gil-Young Park^a · Woo-Sung Kim^a · Su-Oh Lee^b · Tae-Kyung Hwang^c ·

Yun-Chul Kim^c · Sang-Kyu Seo^c · Yong-Sik Chung^{b,*}

^aNew Business Division, Dissol Co, Korea

^bDepartment of Organic Materials & Fiber Engineering, Jeonbuk National University, Korea ^cThe 4th R&D Institute, Agency for Defense Development, Korea

*Corresponding author. E-mail: psdcolor@gmail.com

ABSTRACT

In this study, the pre-treatment of lyocell fabrics was performed using phosphoric acid (PA) as a phosphorus flame retardant and melamine resin (MR) as a cross-linking agent to fabricate carbon fabrics using lyocell fibers. The physical and chemical changes were investigated by thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FT-IR), X-ray diffractometry (XRD) and weight analysis. We confirmed that the weight yield of the carbon fabrics compared to the untreated fabrics increased by 14.7%, and width and length yield of the fabrics increased by 15% and 15.5%, respectively. This may be due to the effect of promoting the dehydration reaction of cellulose, forming char on the fiber surface, which induces a crosslinking reaction in the cellulose molecule and stabilizes the structure upon pyrolysis.

초 록

본 연구에서는 리오셀 섬유를 사용하여 탄소직물을 제조함에 있어, 인계 난연제인 Phosphoric Acid (PA)와 가교제인 Melamine resin (MR)을 사용하여 섬유의 전처리를 수행하고 TGA, FT-IR, XRD, 중 량 분석을 통하여 물리적, 화학적 구조 변화에 대하여 고찰하였다. 전처리를 통하여 내염화 및 흑연화 된 직물의 경우 미처리 직물과 비교하여 중량 수율이 14.7%, 직물 폭과 길이의 수율이 각각 15%, 15.5% 증가함을 확인하였다. 이러한 결과는 셀룰로오스의 탈수반응을 촉진과 함께 섬유 표면에 char를 형성하고, 셀룰로오스 분자 내의 가교반응을 유도하여 내염화 시 안정한 구조 형성에 의한 효과로 설 명할 수 있다.

Key Words: Cellulose based-Carbon fiber(셀룰로오스계 탄소섬유), Lyocell(리오셀), Pyrolysis(내염 화), Graphitization(흑연화), Crystallinity(결정), Yeild(수율)

Received 6 June 2019 / Revised 13 September 2019 / Accepted 15 September 2019 Copyright [©] The Korean Society of Propulsion Engineers pISSN 1226-6027 / eISSN 2288-4548 [이 논문은 한국추진공학회 2019년도 춘계학술대회(2019.5.29-31, 라마다프라자 제주호텔) 발표논문을 심사하여 수정·보완한 것임.]

1. 서 론

셀룰로오스계 탄소직물은 유연성이 좋으며, 낮 은 열전도성, 초고온 내삭마 등의 특성으로 로켓 노즐, 미사일 탄두 등 주로 우주항공 분야의 고 온 단열재로 사용되고 있다[1-3]. 전구체로써 주 로 레이온 섬유가 사용되고 있으나, 섬유 제조 시 황산(H₂SO₄) 및 이황화탄소(CS₂)와 같은 인체 에 유해한 화학약품이 사용되므로 제조 시설이 점차 폐쇄 및 축소되고 있으며, 이에 전 세계적 으로 레이온을 대체할 수 있는 친환경적인 리오 셀에 대한 연구가 증가하고 있다. 리오셀은 기존 레이온 섬유와 비교하여 제조 공정이 간단하고, 환경 및 인체에 무해하며, 형태안정성이 뛰어난 특성을 가지고 있다[4,5]. 리오셀은 내염화와 탄 화 공정을 통해 화학적, 기계적, 물리적 및 미세 구조의 변화를 통하여 탄소섬유로 전환된다. 리 오셀의 내염화 공정은 400℃ 이하의 온도 범위 에서 수행되며, 이 과정에서 급격한 탈수반응 및 해중합이 진행됨에 따라 다량의 중량 손실이 발 생된다[6]. 셀룰로오스의 이론적 탄소 수율은 44.2%로 주로 탈수반응과 해중합에 의하여 CO, CO₂, Aldehyde, Organic acid 형태의 가스로 증 발되어 최종 10~20% 정도의 탄소 수율만을 얻 을 수 있다[7-9,18]. 셀룰로오스의 물성 및 수율 에 영향을 주는 인자로 전구체 구조, 촉매의 유 무, 내염화 조건 등이 있으며, 이에 따라 셀룰로 오스의 열안정성이 달라지는 것으로 보고되었다 [10]. 이중 초기 전구체의 결정구조에 의해 내염

화 시 나타나는 화학적, 물리적 구조가 나타나 며, 이는 최종 물성 및 수율에 영향을 주는 것으 로 알려져있다[5,11-14]. 또한, 내염화 공정 시 PA와 같은 인계난연제를 활용하여 셀룰로오스 구조의 CH2OH에 결합하여 저온에서의 탈수반 응을 유도하고, 표면에 char 형성을 통한 내부로 의 열 공급을 지연시켜 최종 탄소섬유 수율을 향상시키는 표면가공이 사용되고 있다[7,15]. 가 교제에 대한 연구로 MR 농도 및 처리 시간에 따른 셀룰로오스 직물의 세탁 내구성, LOI 특성 및 표면 변화에 대한 연구가 진행되었다[16]. 본 연구에서는 리오셀 직물에 PA를 처리하여 수율 증대 효과를 확인하고, 추가적으로 가교제인 MR 을 첨가하여 초기 셀룰로오스 결정 구조 변화시 키고 열처리를 통한 구조 및 중량감소율 변화를 비교 분석하였다. 리오셀 직물의 전처리 유·무 및 함량에 따른 열 및 구조 특성을 확인하기 위 해 TGA, FT-IR, XRD 분석을 진행하였으며, 이 결과를 바탕으로 셀룰로오스와 PA, MA 분자 간 가교 메커니즘을 Fig. 1에 나타내었다.

2.실 험

2.1 재료(Materials)

연구에 사용된 전구체는 코오롱인더스트리(주) 의 1,500 D 리오셀 원사를 사용하여 745 g/m² 밀도의 2/2 twill 패턴의 직물을 제직하여 사용 하였다. 제조된 직물은 열처리 시 탈수화 반응

Fig. 1 Cross-linking Mechanism of Cellulose.

Count of thread ends per 5 cm				
Warp (Counts)	108			
Weft (Counts)	77			
Surface density (g/m ²)	745			
Width of the fabric (mm)	50			
Thickness (mm)	1.10-1.19			
Pattern	2/2 twill			

Table 1. Lyocell woven Fabrics fabricated for carbon fabric.

및 해중합에 의하여 발생하는 H₂O, CO, CO₂ 등 의 가스에 의하여 물성 및 균일성에 영향을 줄 수 있으므로 발생 가스를 원활히 배출할 수 있 는 구조로 설계되어야 한다. 또한, 직물 밀도가 낮을 시 경·위사 패턴이 틀어지거나, 열처리 시 수축에 의한 직물 비틀림 현상 등의 문제가 발 생하므로 공정 작업성 및 열처리 효율 개선을 위하여 적정 밀도로 제직해야 한다.

전처리액으로 사용된 PA(H₃PO₄, 85%, Extra pure type, Daejung Chemicals & Metals)은 0~30 g/L 사용하였으며, 가교제로써 MR(MR-3, 69.0%, Taeyang Chemical Co., Ltd)의 경우 각 각 35, 70, 140 g/L 사용하여 직물에 처리하였 다. 실험에 대한 세부 조건은 Table 1에 나타내 었으며, 별도의 전처리를 하지 않은 샘플은 B, 전처리한 샘플의 경우 PA는 P, MR은 M으로 각 각 표기하였고, 처리된 양(g/L)에 따라 P와 M 뒤에 숫자로 표기하였다.

2.2 전처리(Pre-treatment)

제조된 리오셀 직물은 50×200(Width×Length, mm)로 절단하여 준비한 후 105℃오븐에서 20 min 건조 후 사용하였다. PA와 MR을 Table 2에 나타낸 각 조건 함량에 따라 증류수와 혼합하여 트레이에 준비한 후 리오셀 직물을 약 30min간 침지시켜 전처리액이 충분히 스며들 수 있도록 하 였다. 이후 패딩기를 사용하여 약 80~85% pick-up 율로 고형분을 부착시키고 120℃ 오븐에서 30min 동안 건조시킨 후 전처리 공정을 수행하였다. Fig. 2에 전처리 공정 모식도를 나타내었다.

Sample	PA (g/L)	MR (g/L)	
В	0	0	
P30	30	0	
P30M35	30 35		
P30M70	30	70	
P30M140	30	140	

Table 2. Details of the Prepared Samples.

Fig. 2 Pre-treatment precedure for Lyocell Woven Fabrics.

Fig. 3 Flow diagram of pyrolysis process for the preparation of carbon fabric.

2.3 내염화 및 흑연화(Pyrolysis and Graphitization)

전처리된 직물은 배치식 내염화로를 이용하여 Fig. 3에 나타낸 바와 같이 내염화 공정을 수행 하였다. 공정은 크게 물리적으로 결합된 수분 제 거(30~150℃, 5℃/min), 화학적으로 결합된 수분 제거(150~250℃, 2℃/min), 주쇄의 해중합에 의 한 열분해(250~350℃, 2℃/min) 구간으로 총 3단

Fig. 4 Flow diagram of graphitization process for the preparation of carbon fabric.

계로 분리하여 진행하였으며, Air에 존재하는 O₂ 에 의해 해중합이 촉진될 수 있으므로[17], 해중 합이 본격적으로 시작되는 250°C(20min 유지)에 서 N₂로 가스를 교체한 후 승온시켜 총 144min 동안 내염화를 진행하였다. 내염화 공정을 거친 직물은 배치식 흑연화로를 사용하여 Ar 분위기 하에 13h30min 동안 처리하였다. Fig. 4에 흑연 화 공정의 온도 프로파일을 나타내었다.

2.4 분석(Analysis)

리오셀 직물의 PA 및 MR 처리 유무에 따른 열안정성을 확인하기 위하여 TGA((주)신코엠앤티, N-1500)를 사용하여 50cc/min의 질소가스가 유입 되는 불활성 분위기에서 ~600℃까지 10℃/min의 승온 속도로 측정하였다. 전처리액 처리에 따른 구조 및 결정성 변화를 확인하기 위하여 FT-IR (Frontier, Perkin Elmer Co.)과 XRD(X'pert Pro Powder, PANalytical Co.)를 확인하였다. FT-IR 은 Attenuated Total Reflection(ATR) 방식으로 400~4,000 cm⁻¹의 범위를 측정하였으며, XRD는 40 kV, 30 mA의 CuKa X-ray를 조사하여 Scan speed 4°/min으로 20범위 10~50°까지 측정하였 다. 리오셀 직물과 내염화 및 흑연화 공정 후 직 물의 중량 변화는 소수점 넷째까지 측정 가능한 화학분석 저울을 사용하여 측정된 잔존율을 백 분율(%)로 표기하였다.

Fig. 5 TGA analysis of Base, PA and PA+MA.

3. 결과 및 토론

3.1 전처리에 의한 열안정성 분석

미처리 리오셀 직물과 전처리 공정을 거친 리 오셀 직물에 대한 열안정성을 확인하기 위해 TGA를 이용하여 N2 분위기 하에 ~600℃까지 10℃/min의 승온 속도로 분석하여 Table 3과 Fig. 5에 나타내었다. 미처리 리오셀 직물의 경 우 250~350℃ 사이의 좁은 온도 구간에서 급격 한 중량 손실이 나타나고 있음을 확인할 수 있 다. 이 구간에서의 중량 손실은 분자 내 탈수화 반응과 셀룰로오스 구조상에 존재하는 C=O, C=C 결합의 분해로 인하여 H₂O, CO, CO₂ 등의 가스로 발생되면서 나타나는 해중합 반응의 결 과로 볼 수 있으며[19], 600℃에서 열분해 후 약 18%만 남게 된다. 이에 반해 PA와 MR을 이용 하여 전처리를 거친 리오셀 직물의 경우 초기 250℃ 이전 온도 구간에서부터 탈수 및 열분해 거동을 보이는 것을 확인할 수 있다. PA에 의해 셀룰로오스의 탈수소화가 촉진되며 표면에 char 가 형성되어 외부의 산소를 차단하여 내산화성 을 가지며, 셀룰로오스 내부로의 열 공급을 물리 적으로 지연시켜 분해를 저감시키는 결과로 볼 수 있다. PA에 MR을 혼합하여 처리한 경우 분 해 시작 온도가 약 20℃ 정도 높아진 것을 확인 할 수 있으며, 이는 셀룰로오스 분자 간 가교에 의한 결과로 볼 수 있다[14]. MR에 존재하는 아 미노기와 셀룰로오스의 수산기의 결합을 통하여

Sample	Pyrolysis(~350℃)			Graphitization(~2200 °C)		
	Weight(%)	Width(%)	Length(%)	Weight(%)	Width(%)	Length(%)
В	23.1	70.2	65.5	10.9	58.0	54.5
P30	37.1	76.2	68.7	15.8	64.0	61.9
P30M35	36.3	76.0	72.4	16.8	64.0	57.9
P30M70	41.3	78.7	74.4	18.1	66.0	71.9
P30M140	55.5	84.4	80.4	25.6	73.0	75.0

Table 3. Yield analysis of Base, PA and PA+MA after pyrolysis and Graphitization.

300℃ 이전 온도 구간에서 열분해 속도를 지연 시키는 것으로 볼 수 있다. 600℃ 열분해 후 중 량 감소율에서는 큰 차이를 보이지 않으나, PA 만 처리한 시료에 비해 MR을 처리한 경우 처리 량에 따라 최종 탄소 수율이 증가하는 것을 확 인할 수 있으며, 이는 내염화 시 가교 반응을 통 해 보다 안정적인 구조 조건에서 열에 노출되어 나타난 결과로 볼 수 있다.

3.2 전처리에 의한 구조 분석

전처리 공정을 거친 리오셀 직물에 대한 구조 를 확인하기 위해 FT-IR을 이용하여 구조를 분 석하였다. Fig. 6에 나타낸 바와 같이 리오셀의 특징 peak로 1,000 cm⁻¹에서 C-O, C-OH peak, 3,000~3,500 cm⁻¹에서 O-H, 1,700 cm⁻¹에서 C=O peak를 확인할 수 있다. PA를 처리 시 950 cm⁻¹ 과 1,011 cm⁻¹에서 P-OH peak, 1,170 cm⁻¹에서 P=O peak가 검출되어, 주로 셀룰로오스의 특징 peak가 나타나는 구간과 거의 일치하여 확인하기 어렵다. MR을 처리했을 경우 주로 1,632 cm⁻¹에서 C=N peak, 807 cm⁻¹, 1,529 cm⁻¹, 3,413 cm⁻¹에서 N-H와 관련된 피크를 확인할 수 있으며, MR 함 량 증가에 따라 807 cm⁻¹과 1,529 cm⁻¹에서 나타 나는 peak가 증가하는 것을 확인할 수 있다.

미처리 리오셀 직물과 전처리 공정을 거친 리 오셀 직물에 대한 XRD 그래프를 Fig. 7에 나타 내었다. 리오셀의 경우 높은 결정성을 가지며 12°와 21.4°(002)에서 매우 강한 peak가 나타나는 것을 볼 수 있다[19]. 그러나 PA로 처리했을 경 우 12°와 21.4° peak가 약해지는 것을 확인할 수 있다. 이는 분자 구조 내에 phosphate가 침투함

Fig. 6 FT-IR-ATR analysis of Base, PA and PA+MA.

Fig. 7 XRD analysis of Base, PA and PA+MA.

에 따라 리오셀의 결정구조에 손상을 주어 나타 난 결과로 볼 수 있다. PA 30 g/L에 MR 35 g/L 를 처리했을 경우 결정 세기에 큰 변화가 나타 나지 않으나, MR 함량을 70~140 g/L으로 증가 시킴에 따라 다시 셀룰로오스 결정 피크가 증가 하는 것을 확인하였으며, 이는 MR의 아미노기와 리오셀의 수산기의 결합이 증가함에 따라 나타 난 결과로 볼 수 있다.

3.3 수율 분석

전처리 유·무와 함량 증가에 따른 내염화 및 흑연화 수율 결과를 비교하여 Table 3에 나타내 었다. Fig. 3과 4에 나타낸 내염화 및 흑연화 온 도 조건으로 실험한 결과 미처리 리오셀 직물의 경우 중량 수율이 10.9%, 직물 폭과 길이 수율이 각각 58.0%와 54.5%로 확인되었다. PA만 처리한 경우 미처리 시료와 비교하여 중량 수율이 4.9% 증가하였고, 직물 폭과 길이가 각각 6%, 7.4%로 수율이 증가한 것을 확인하였다. 이는 내염화 시 탈수반응을 저온으로 유도하고, 열분해 속도를 느리게 조절함으로써 리오셀 직물의 열 안정성 이 향상된 결과로 볼 수 있다.

PA와 MR을 동시에 혼합하여 처리한 경우 PA만 처리한 시료와 비교하여 무게, 폭, 길이에 서 모두 수율이 증가하는 것을 확인하였으며, 이 는 내염화 시 가교반응에 의한 것으로 볼 수 있 다. P30M140 시료의 경우 미처리 시료와 비교하 여 중량 수율이 14.7% 증가하였고, 직물 폭과 길 이의 수율이 각각 15%, 15.5% 증가하는 것을 확 인하였다.

4. 결 론

본 연구에서는 리오셀 섬유를 사용하여 탄소 직물을 제조함에 있어 PA와 MR로 전처리 후 내염화 및 흑연화 공정을 통하여 나타나는 열적, 구조적, 물리적 특성 변화를 확인하였다. 미처리 시료와 비교하여 PA의 경우 내염화 시 탈수소 화 반응을 촉진하고 물리적 열 공급을 차단함으 로써 최종적으로 열안정성을 증가시켜 최종 수 율이 향상되는 것을 확인하였다. PA에 MR을 추 가하여 처리할 경우 PA만 처리했을 경우보다 수율이 향상됨을 확인할 수 있다. 이는 MR은 PA 역할과는 별개로 해중합시 발생되는 가스 물질과 결합 후 다른 분자와의 가교를 형성하기 때문에 상대적으로 구조적 안정성을 부여하여 최종 탄화수율 향상에 기여하는 것으로 볼 수 있다. 상기 연구결과를 바탕으로 MR 가교반응에 의한 리오셀 결정 구조 변화를 통해 열안정성을 부여할 수 있어 최종 탄소직물 제조 시 탄화수 율 향상에 기여할 수 있을 것으로 사료된다.

후 기

본 연구는 리오셀계 탄소섬유 기반 노즐 개발 사업에 의하여 지원되었습니다.

References

- Donnet, J.B., Rebouillat, S., Wang, T.K., and Peng, J.C.M., "Carbon Fibers., 3rd ed," Marcel Dekker, NY, USA, pp. 1-85, 1998.
- 2 Peebles, L.H., "Carbon Fibers: Formation, Structure, and Properties, 1st ed.," CRC Press, FL, USA, 1995.
- Rossi, R.C. and Wong, W.C., "Availability of Aerospace Rayon for SRM Nozzle Insulators," *American Institute of Arronautics and Astonautics*, pp. 1-6, 1996.
- Woodings, C.R. "The Development of Advanced Cellulosic Fibers," *International Journal of Biological Macromolecules*, Vol. 17, pp. 305-309, 1995.
- Peng, S., Shao, H., and Hu, X., "Lyocell Fibers as the Precursor of Carbon Fibers.," *Journal of Applied Polymer Science*, Vol. 90, Issue 7, pp. 1941-1947, 2003.
- Bacon, R., "Carbon Fibers from Rayon Precursors," *Chemistry and Physics of Carbon*, Vol. 9, pp. 1-102, 1973.
- Horrocks, A.R., "An Introduction to the Burning Behaviour of Cellulosic Fiber," *Journal* of Scientific and Engineering Research, Vol. 99, pp. 191-197, 1983.
- 8. Wang, S., Guo, X., Liang, T., Zhou, Y., and Luo,

Z., "Mechanism Research on Cellulose Pyrolysis by Py-GC/MS and Subsequent Density Functional Theory Studies," *Bioresource Technology*, Vol. 104, pp. 722-728, 2012.

- Scheirs, J., Camino, G., and Tumiatti, W., "Overview of Water Evolution During the Thermal Degradation of Cellulose," *European Polymer Journal*, Vol. 37, Issue 5, pp. 933-942, 2001.
- Klason, Peter., Heidenstam, G.V., and Norlin, Evert., "Studies of Wood Carbonization. I. The Dry Distillation of Cellulose. Zeit," Angewandte Chemie International Edition, Vol. 22, pp. 1205-1214, 1909.
- Kim, D.Y., Nishiyama, Y., Wada, M., and Kuga, S., "Graphitization of Highly Crystalline Cellulose," *Carbon*, Vol. 39. Issue 7 pp. 1051-1056, 2001.
- Weinstetn, M. and Broido, A., "Pyrolysiscrystallinity Relationships in Cellulose," *Combustion Science and Technology*, Vol. 1, Issue 4, pp. 287-292, 1970.
- Kilzer, F.J. and Broido, A., "Speculations on the Nature of Cellulose Pyrolysis," *Pyrodynamics*, Vol. 2, pp. 151-163, 1965.
- 14. Ayeni, N.A., Adeniyi, A., Abdullahi, N.N., and Bernard, E., "Thermogravimetric and Kinetic

Study of Methylolmelamine Phosphate Treated-cotton Fabric," *Bayero Journal of Pure and Applied Sciences.*, Vol. 5, Issue 2, pp. 51-55, 2012.

- Kenzi, T., "Pyrolysis and Combustion of Cellulose in the Presence of Inorganic Salts," Bulletin of the Chemical Society of Japan, Vol. 24, Issue 4, pp. 164-168, 1951.
- Wu, W. and Yang, C.Q., "Comparison of DMDHEU and Melamine-Formaldehyde as the Binding Agents for a Hydroxy-Functional Organophosphorus Flame Retarding Agent on Cotton," *Journal of Fire Sciences*, Vol. 22, Issue 2, 2004.
- Basch, A. and Lewin, M., "The Influence of Fine Structure on the Pyrolysis of Cellulose. II. Pyrolysis in Air," *Journal of Polymer Science: Polymer Chemistry Edition*, Vol. 11, Issue 12, pp. 3095-3101, 1973.
- Antal, M.J. Jr., "Biomass Pyrolysis: A Review of the Literature Part 1-Carbohydrate Pyrolysis," Advances in Solar Energy, pp. 61-111, 1983.
- Zeng, F. and Ding, P., "The Structural Transitions of Rayon under the Promotion of a Phosphate in the Preparation of ACF.," *Cellulose*, Vol. 15, Issue 1, pp. 91-99, 2008.