Research Paper

DOI: http://dx.doi.org/10.6108/KSPE.2019.23.2.013

바이오항공유의 함량 변화에 따른 점화지연특성 분석

강샛별"· 정병훈"*

Analysis on Ignition Delay Time According to the Ratio of Bio-aviation Fuel in Jet A-1 Mixture

Saetbyeol Kang^a · Byunghun Jeong^{a,*}

^a The 4th R&D Institute - 5th Directorate, Agency for Defense Development, Korea *Corresponding author. E-mail: jeongbh@add.re.kr

ABSTRACT

In this study, the ignition delay time of blended aviation fuels was measured and analyzed to confirm the characteristic of ignition delay according to the blending ratio of bio-aviation fuel to petroleum-based aviation fuel. The ignition delay time of bio-aviation fuel(Bio-6308) was shorter than that of petroleum-based aviation fuel(Jet A-1) at all measured temperatures; further, the ignition delay time of the blended aviation fuels shortened as the ratio of Bio-6308 increased. It was confirmed that the aromatic compounds constituting the Jet A-1 affect these results; this was done by comparing the obtained ignition delay time with that of n-heptane/Toluene.

초 록

본 연구에서는 석유계항공유와 혼합하여 사용이 가능한 바이오항공유의 혼합 비율에 따른 점화지연 특성의 변화를 확인하기 위하여, 두 항공유를 일정한 비율로 혼합한 시료의 점화지연시간을 측정하여 분석하였다. 측정한 모든 온도 조건에서 Bio-6308의 점화지연시간이 Jet A-1의 점화지연시간보다 짧게 나타났으며, 두 항공유를 일정한 비율로 혼합한 경우에도 Bio-6308의 함량이 증가할수록 점화지연시간 은 짧아지는 경향을 보였는데, 이는 Jet A-1을 구성하는 방향족 화합물의 영향 때문임을 n-heptane/ Toluene의 점화지연시간 측정을 통해 확인하였다.

Key Words: Bio Aviation Fuel(바이오항공유), Petroleum-based Aviation Fuel(석유계항공유), Ignition Delay Time(점화지연시간), Aromatic Compounds(방향족 화합물)

Received 23 December 2018 / Revised 12 March 2019 / Accepted 15 March 2019 Copyright © The Korean Society of Propulsion Engineers pISSN 1226-6027 / eISSN 2288-4548 [이 논문은 한국추진공학회 2018년도 추계학술대회(2018. 12. 19-21, 웨스틴 조선호텔 부산) 발표논문을 심사하여 수정·보완한 것입.]

1. Introduction

최근 대두되고 있는 온실 가스 등에 의한 환 경오염 문제와 더불어 원료의 지속 가능성에 따 른 에너지 안보 문제로 인해, 항공 산업은 이를 해결하고자 하는 중요한 변화에 마주해있다. 다 른 액체 연료(디젤 또는 가솔린)를 대체 가능한 것으로서 배터리 또는 electrical power 등의 기 술이 비교적 발전되어 있는 것과는 다르게, 항공 유를 대체할 수 있는 기술은 아직 개발 초기의 단계에 머물러있으며, 그중에서도 가장 유망한 기술은 바이오 원료로부터 유래된 바이오항공유 를 개발하여 사용하는 것이다[1].

바이오항공유는 크게 식용기름, 비식용기름, 동물성기름, 그리고 이를 제외한 다른 원료 등을 사용하여 제조할 수 있으며, 이에 관련된 내용을 Table 1에 정리하였다[2]. 동·식물성 유지의 화학 반응 및 특정 처리공정을 통해 제조되는 바이오 항공유는 원유의 정제공정을 통해 제조되는 석 유계항공유와 같은 규격의 물성은 만족하더라도 구성 성분의 종류와 화합물의 화학구조가 다르 며, 석유계항공유에 비해 CO₂의 배출이 적고, 황 화합물과 방향족 화합물을 함유하지 않는 등의 특성을 갖는다.

현재까지 개발 및 생산된 바이오항공유는 기 존의 석유계항공유와 일정한 비율로 혼합하여 사용할 수 있으며, 특정 제조 공정으로부터 제조 된 바이오항공유는 50% 이상을 혼합하여 사용하 는 것이 인증되어 있다. 그러나 실제 항공기에 사용하기 위해서는 기존과 동일한 공급 인프라 를 사용할 수 있어야 한다. 또한, 항공기 또는 엔진의 개조가 필요하지 않아야 하며, 기존의 석 유계항공유와 동등 이상의 기술 사양을 충족하 여야 한다.

Table 1. Sour	ce of	feedstocks
---------------	-------	------------

Edible oils	Soybeans, Rapeseed, Safflower, Rice bran oil, Barley, Sesame, Groundnut, Coconut, Palm
Non-edible oils	Salmon oil, Cotton seed, Tabac co seed, Rubber seed, Camelin a, Coffee ground, Neem
Animal fats	Pork lard, Beef tallow, Poultry fat, Fish oil
Other sources	Bacteria, Algae, Microalgae, Ta rpenes, Poplar, Latexes, Waste cooking oil

따라서 본 연구에서는 연소기 설계 및 성능 구현 시에 중요하게 생각되는 요소 중의 하나인 연료의 점화지연특성을 확인하기 위하여, 바이오 항공유와 석유계항공유를 일정한 비율로 혼합한 각 항공유의 점화지연시간을 Combustion Resea rch Unit(CRU) 장비를 사용하여 측정하였으며, 그 결과를 토대로 점화지연특성에 관해 분석하 였다.

2. Experimental

2.1 Materials

본 연구에서 사용한 항공유는 UOP사에서 Tall ow를 원료로 하여 제조한 바이오항공유인 10PO SF6308(이하 Bio-6308)과 기존의 석유계항공유인 Jet A-1이다. 외국 바이오항공유 중에서도 10PO SF6308을 실험대상으로 선정한 이유는, 자체 개 발한 바이오항공유의 제조 공정인 HRJ(Hydro-p rocessed Renewable Jet)와 동일한 공정으로 제 조된 연료이기 때문에 향후 자체 개발한 바이오 항공유의 점화지연특성과 비교 가능한 기초 데 이터를 얻기 위함이다.

2.2 Methods

각 샘플의 점화지연시간을 측정하기 위해 Fig. 1에 나타낸 CRU(Combustion Research Unit, Fu eltech)를 활용하였다. CRU 장비는 정적 챔버 내 에 공기를 주입한 후, 측정하고자 하는 조건의 온도와 압력을 유지한 상태에서 시료를 분사하 여 연소되는 동안 시간에 따른 압력의 변화를 측정하는 장비이다.

기존의 많은 연구에서 사용된 Shock tube는 연료의 화학적 점화지연시간을 측정하는 장비로, 연료의 물리적 점화지연시간이 배제된 결과만을 얻을 수 있으며, IQT(Ignition Quality Tester) 장 비 또한 818 K, 21 bar의 단일 온도 및 압력 조 건에서만 점화지연시간 측정이 가능하다. 이에 비해 CRU 장비를 사용하여 점화지연시간을 측 정할 경우, 연료의 물리적·화학적 점화지연시간 을 모두 포함하는 결과를 얻을 수 있으며, 다양

제23권 제2호 2019. 4.

한 온도와 압력조건에서 실험이 가능하다는 장 점을 갖는다.

Bio-6308, Jet A-1 그리고 두 항공유를 50:50(v:v)으로 혼합한 시료의 점화지연시간은 700 K부터 850 K까지 총 4개의 온도 조건에서 측정하였으며, 압력 조건은 기존의 점화지연시간 관련 연구들의 조건과 동일한 21 atm으로 설정 하였다. 또한, 바이오항공유의 함량 변화에 따른 점화지연특성 분석을 수행하기 위하여, Jet A-1 과 Bio-6308을 100:0, 80:20, 60:40, 50:50, 40:60, 20:80, 0:100(v:v)의 비율로 혼합하여 818 K, 21 atm의 조건에서 측정하였다. 이 때, 장비로 공급 되는 산화제인 air의 압력은 30 bar, purging에 사용되는 질소의 압력은 4 bar로 설정하였으며, 챔버 주위에 공급되는 항온수의 온도는 50 ℃로 하였다.

시료 측정 시에는 3번의 pre-injection을 통해 노즐의 끝부분까지 연료가 가득 차게 하였으며, 연소가 진행되는 동안 증가한 압력을 10번씩 측 정하였다. 점화지연시간은 연소가 끝난 후 기록 된 최고 압력의 10%에 도달했을 때의 시간인 MCD(Main Combustion Delay)의 평균값을 사 용하여 얻었다. 각 시료의 점화지연시간 측정이 끝난 후에는 Methyl Alcohol(DUKSAN, EP, Korea)을 사용하여 3초간 3번의 세척을 하였다.

실험 대상 연료의 점화지연특성을 분석하기 위한 추가 데이터로써, 각 연료와 일정한 비율로 혼합된 연료들의 온도에 따른 표면장력을 Force tensiometer(K11, KRÜSS) 장비를 사용하여 측정 하였고, 측정값의 신뢰성을 확보하기 위해 5번의 측정을 통해 평균값을 구하였다. 각 항공유의 정 성 및 정량적인 자료를 얻기 위해 GC-MS(Gas Chromatography-Mass Spectrometer, Agilent 7890) 장비를 사용하였고, 유출시간에 따른 스펙 트럼 intensity의 피크에 해당하는 화합물을 확인 하였다. 또한, GC-MS의 결과를 토대로 각 항공 유를 구성하는 성분의 화학구조가 점화지연특성 에 미치는 영향에 대해 분석하기 위하여, 탄소수 가 7개이며 파라핀 구조인 n-heptane (SAMCHUN, GR, >99.0%, Korea)과 탄소수가 7 개이며 구조인 aromatic Toluene(SIGMA-

Fig. 1 Schematic of CRU.

ALDRICH, anhydrous, 99.8%, U.S.A.)을 각각 100:0, 75:25, 50:50, 25:75, 0:100의 비율로 혼합하 여 818 K, 21 atm에서의 점화지연시간을 측정하 였다.

3. Results and Discussion

3.1 Main Combustion Delay(MCD) time of avi ation fuels

각 항공유의 점화지연특성을 확인하기 위해 바이오항공유(Bio-6308), 석유계항공유(Jet A-1), 그리고 두 항공유를 50:50(v:v)의 비율로 혼합한 시료의 온도별 점화지연시간을 측정하였고, 그 결과를 Fig. 2와 Table 2에 나타내었다. 온도 조 건은 CRU 장비를 사용하여 측정 가능한 온도 범위 내에서 총 4개의 point를 선정하였으며, 압 력은 기존의 점화지연시간 관련 연구들과 동일 한 조건인 21 atm으로 설정하였다.

Fig. 2에는 시간에 따른 압력의 변화를 기록한 raw graph를 나타내었다. 최고압력의 10%에 해

Fig. 2 P-t curves of various aviation fuels (818 K, 21 atm).

Table 2.	Main	combustion	delay	times	of	various
aviation fuels.						

Fuel	Temp. [K]	MCD [ms]
	700	17.59
Lot A 1	750	9.43
Jet A-1	818	3.47
	850	2.76
Int A 1	700	13.08
Jet A-1	750	7.56
Bio 6208	818	3.06
D10-0300	850	2.41
	700	11.59
Bio-6308	750	6.46
	818	2.73
	850	2.10

당하는 압력에 도달했을 때의 시간(MCD)을 점화지연시간으로 정의하며, 818 K, 21 atm의 조건에서 Bio-6308, Jet A-1과 Bio-6308를 50:50(v:v)으로 혼합한 시료, 그리고 Jet A-1의 점 화지연시간은 2.71, 3.07, 3.47 ms으로 측정되었 다.

Table 2에서 알 수 있듯이, Bio-6308, Jet A-1 그리고 두 항공유를 50:50(v:v)의 비율로 혼합한 시료는 온도가 높아질수록 점화지연시간이 짧아 지는 경향을 보인다. 또한, 모든 온도 조건에서 점화지연시간은 Bio-6308이 가장 짧고 Jet A-1이 가장 길게 측정되었으며, 온도가 높아질수록 각 시료의 점화지연시간의 차이가 작아지는 것을

Fig. 3 Main combustion delay times of blended aviation fuel.

able 3. Surface tension	of	various	aviation	fuels.
-------------------------	----	---------	----------	--------

Fuel	Temp. [℃]	Surface Tension [mN/m]
	19.63	25.26
	39.83	24.08
Jet A-1	59.32	22.29
	79.08	20.90
	101.89	19.12
	19.32	24.67
Jet A-1	38.33	23.20
+	58.04	21.99
Bio-6308	77.90	20.68
	98.06	18.75
	20.88	24.30
	38.40	22.90
Bio-6308	58.92	20.91
	80.36	19.39
	101.83	18.06

확인할 수 있다.

Bio-6308과 Jet A-1을 혼합하였을 때, 점화지연 특성이 어떻게 변화하는지 확인하기 위하여 Jet A-1:Bio-6308 = 100:0, 80:20, 60:40, 50:50, 40:60, 20:80, 0:100(v:v)의 비율로 혼합하여 818 K, 21 atm의 단일 온도 및 압력 조건에서 점화지연시 간을 측정하였으며, 그 결과를 Fig. 3에 나타내 었다. 혼합한 바이오항공유의 함량이 증가할수록 점화지연시간은 짧아지는 것을 확인할 수 있다.

Fig. 4 GC-MS analysis results of aviation fuels (a)Jet A-1, (b)Bio-6308.

Table 3에는 Bio-6308과 Jet A-1의 점화지연특 성이 다르게 측정되는 이유와, 이들을 혼합한 경 우에 나타나는 점화지연특성의 경향을 분석하기 위하여 각 시료의 표면장력을 측정한 결과를 나 타내었다. 표면장력은 각 연료가 분사될 때의 분 무입경에 영향을 주며, 동일 압력과 온도에서의 분무입경은 표면장력 값의 제곱근에 비례한다 [3]. 연료의 분무입경이 작아지면 산소와 접촉하 는 비표면적이 커지게 되어 점화지연이 더 짧아 질 것으로 예측할 수 있으며[4], 따라서 모든 측 정 온도에서 표면장력 값이 가장 작게 측정된 Bio-6308의 점화지연시간이 가장 짧게 나타나는 것으로 유추할 수 있다.

Fuel	Jet A-1	Bio-6308	
	Decane (12.91%)	Octane (9.66%)	
	Undecane (11.94%)	Nonane (3.65%)	
	Nonane (9.51%)	Heptane (3.39%)	
	Dodecane (7.86%)	Pentane (3.26%)	
Components	Tridecane (6.01%)	Decane (2.75%)	
(Area %)	Benzene (4.00%)	Hexadecane (2.38%)	
	Tetradecane (3.69%)	Undecane (2.19%)	
	1-Hexene (3.25%)	Pentadecane (1.87%)	
	<i>p</i> -Xylene (2.88%)	Dodecane (1.75%)	
	Pentadecane (2.20%)	Tridecane (1.60%)	

Table 4. Components of aviation fuels.

3.2 Effects of components on Main Combustion Delay(MCD) time of aviation fuels.

각 항공유의 정성 및 정량적 자료를 통한 추 가 해석을 위해 GC-MS 분석을 실시하였으며, 그 결과를 Fig. 4에 나타내었다. 또한, 분석 결과 데이터에서 Abundance가 높은 순서로 10개의 성분을 선정하여 Table 4.에 정리하였다. 항공유 를 구성하는 성분의 종류를 기준으로 하였을 때, Jet A-1에는 Bio-6308에 없는 Benzene, Xylene 등의 방향족 화합물이 약 6.88% 존재함을 확인 할 수 있다. 참고 사항으로 실험에 사용한 두 항 공유의 성적서에 의하면, Jet A-1은 방향족 함량 이 21.03%이며, Bio-6308은 2.58%인 것으로 확인 되어 본 연구에서 얻은 데이터와는 다소 차이가 있음을 확인하였다.

이외에도 두 항공유에는 cyclo-, isobutyl-, dim ethyl- 등의 naphthene, olefin계 화합물이 존재 하지만, 1.5% 미만의 매우 적은 함량으로 존재하 여 위의 표에는 나타내지 않았으며, 항공유의 점 화지연특성에 주는 영향에 대해서도 본 연구에 서는 고려하지 않았다.

방향족 화합물이 항공유의 점화지연특성에 미 치는 영향은 toluene/n-heptane의 산화반응의 과 정으로 설명할 수 있으며[5-9], 이는 다른 alkyl-b enzene 화합물의 경우에도 적용이 가능하다. n-h eptane과 같은 긴 사슬을 가진 paraffin의 낮은 온도에서의 분해는 주변의 O2에 의한 분자 내 수소원자 공격에 따른 OH radical의 생성을 통 해 시작된다. 이 radical은 다른 n-heptane 분자 내의 수소원자를 공격하여 보다 적은 탄소수를 갖는 분자가 생성되게 하며, peroxy radical 또는 peroxide가 되어 일정 온도에서 분해된 후, 빠른 가지 반응을 일으켜 점화가 전파되게 한다. 그러 나 방향족 화합물인 toluene이 존재할 경우에는 OH radical이 toluene의 산화반응에도 관여하게 되고, 이 때 생성되는 Benzvl radical(C₆H₅CH₂*) 은 1000 K 이하에서 열적으로 안정하며 주변의 O2에 의해서도 더 이상 산화되지 않는 특성을 갖는다[5-8,10,11].

이와 같은 사실을 검증하기 위하여 탄소수가 7개로 동일하고 화학구조가 paraffin과 aromatic 으로 다른 n-heptane과 Toluene을 각각 100:0, 7 5:25, 50:50, 25:75, 0:100 (v:v)의 비율로 혼합하여 818 K, 21 atm의 조건에서 점화지연시간을 측정 하였으며, 결과는 Fig. 5 ~ 6과 같다. 혼합한 Tol uene의 비율이 높아질수록 점화지연시간은 길게 측정되었으며, 100%의 Toluene은 측정한 온도와 압력 조건에서 점화조차 되지 않음을 확인하였 다.

이러한 사실로부터 Jet A-1에 함유된 방향족 화 합물의 산화 반응 과정에서 생기는 Benzyl radical의 영향으로, Bio-6308의 점화지연시간이 Jet A-1보다 더 짧게 측정되었다고 판단할 수 있 다.

방향족 화합물의 존재 여부와 마찬가지로 paraffin 화합물의 분자구조 또한 항공유의 점화 지연특성에 영향을 줄 수 있으며, 이에 관련한 분석은 향후 수행할 연구에서 추가로 분석이 필 요할 것으로 판단된다.

Fig. 5 P-t curves of n-heptane/Toluene (818 K, 21 atm).

Fig. 6 Main combustion delay times of n-heptane/ Toluene.

4. Conclusion

본 연구에서는 UOP사에서 tallow를 원료로 하여 제조한 바이오항공유(Bio-6308)와 기존에 상용중인 석유계항공유(Jet A-1)를 혼합하였을 때 점화지연특성이 변화하는 경향을 측정하여 분석하였으며, 그 결과는 다음과 같다.

 Bio-6308, Jet A-1 그리고 두 항공유를 50:50 (v:v)로 혼합한 시료의 온도에 따른 점화지연시 간을 측정하였으며, 모든 온도 조건에서 Bio-630 8의 점화지연시간이 Jet A-1 보다 짧게 나타나는 것을 확인하였다. 2) Jet A-1과 Bio-6308을 각각 100:0, 80:20, 60:40, 50:50, 40:60, 20:80, 0:100 (v:v)으로 혼합하여 점 화지연시간을 측정하였으며, 혼합한 시료의 점화 지연시간은 Bio-6308의 함량이 증가할수록 짧아 지는 것을 확인하였다.

3) 각 항공유의 점화지연특성의 차이를 분석하기 위해 온도별 표면장력을 측정하였고, 모든 측정 온도에서 Bio-6308의 표면장력이 Jet A-1보다 작 은 것을 확인하였다. 표면장력은 연료의 분무입 경에 영향을 주며, 표면장력이 작아질수록 분무 입경이 감소하여 산소와 닿는 비표면적이 증가 하게 되므로, 연료의 점화지연이 짧아질 수 있 다.

4) 각 항공유의 정성 및 정량적 자료를 통한 추가 분석을 위해 GC-MS 분석을 실시하였고, Jet A-1에 Bio-6308에는 함유되지 않은 방향족 화합 물이 존재하는 것을 확인하였다. 또한, 항공유 내에 방향족 화합물의 비율이 증가할수록 비교 적 반응에 대한 안정성이 좋은 benzyl radical의 생성이 증가하게 되어, 점화지연시간이 길어지는 것을 n-heptane/Toluene의 점화지연시간 측정을 통해 확인하였다.

References

- Energy Efficiency and Renewable Energy(EERE), "Alternative Aviation Fuels: Overview of Challenges, Opportunities, and Next Steps", DOE/EE-1515, 2017.
- Atabani, A.E., Silitonga, A.S., Badruddin, I.A., Mahlia, T.M.I., Masjuki, H.H. and Mekhilef, S., "A comprehensive review on biodiesel as an alternative energy resource and its characteristics," *Renewable and Sustainable Energy Reviews*, Vol. 16, No. 4, pp. 2070-2093, 2012.
- "Droplet size," retrieved 03 Dec. 2018 from http://www.spray-nozzle.co.uk/resources/ engineering-resources/guide-to-spray-propert ies/4-droplet-size.

- Gohtani, S., Sirendi, M., Yamamoto, N., Kajikawa, K. and Yamano, Y., "Effect of droplet size on oxidation of decosahexaenoic acid in emulsion system," *Journal of Dispersion Science and Technology*, Vol. 20, No. 5, pp. 1319-1325, 1999.
- Simmie, J.M., "Detailed chemical kinetic models for the combustion of hydrocarbon fuels," *Progress in Energy and Combustion Science*, Vol. 29, No. 6, pp. 599-634, 2003.
- Emdee, J.L., Brezinsky, K. and Glassman, I., "A kinetic model for the oxidation of toluene mear 1200 K," *Jounal of Physical Chemistry*, Vol. 96, No. 5, pp. 2151-2161, 1992.
- 7. Andrae, J., Johansson, D., Björnborn, P., Risberg, Ρ. Kalghatgi, and G., "Co-oxidation auto-ignition in the of primary reference fuels and n-heptane/toluene blends," Combustion and Flame, Vol. 140, No. 4, pp. 267-286, 2005.
- 8. Vanhove, G., Petit, G. and Minetti, R., "Experimental study of the kinetic interactions in the low-temperature autoignition of hydrocarbon binary mixtures and a surrogate fuel," Combustion and Flame, Vol. 145, No. 3, pp. 521-532, 2006.
- Hellier, P., Ladommatos, N., Allan, R. and Rogerson, J., "Combustion and emissions characteristics of toluene/n-heptane and 1-octene/n-octane binary mixtures in a direct injection compression ignition engine," *Combustion and Flame*, Vol. 160, No. 10, pp. 2141-2158, 2013.
- Westbrook, C.K., "Chemical kinetics of hydrocarbon ignition in practical combustion systems," *Proceedings of the Combustion Institute*, Vol. 28, No. 2, pp. 1563-1577, 2000.
- 11. Griffiths, J.F., Halford-Maw, P.A., and

Mahaned, C., "Spontaneous ignition delays as a diagnostic of the propensity of alkanes to cause engine knock," *Combustion and Flame*, Vol. 111, No. 4, pp. 327-337, 1997.

 Kang, S.B., Han, J.S. and Jeong, B.H., "Comparison of ignition delay time of petroleum-based and bio aviation fuel," *Journal of the Korean Society of Propulsion Engineers*, Vol. 22, No. 6, pp. 118-125, 2018.